

EXPLOTACIÓN DE LA RED DE SEGUIMIENTO DE EMBALSES EN APLICACIÓN DE LA DIRECTIVA MARCO DEL AGUA EN LA DEMARCACIÓN HIDROGRÁFICA DEL EBRO

INFORME FINAL DEL EMBALSE DE FLIX

ÁREA DE CALIDAD DE AGUAS CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

DICIEMBRE 2014

EXPLOTACIÓN DE LA RED DE SEGUIMIENTO DE EMBALSES EN APLICACIÓN DE LA DIRECTIVA MARCO DEL AGUA EN LA DEMARCACIÓN HIDROGRÁFICA DEL EBRO

PROMOTOR: CONFEDERACIÓN HIDROGRÁFICA DEL EBRO **SERVICIO:** CONTROL DEL ESTADO ECOLÓGICO **DIRECCIÓN DEL PROYECTO:** Concha Durán Lalaguna y María José Rodríguez Pérez **EMPRESA CONSULTORA:** Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universidad de Valencia Estudi General **EQUIPO DE TRABAJO:** Área de Limnología, dirigida por Dr. Eduardo Vicente Pedrós, Catedrático de Ecología. Director del Estudio. PRESUPUESTO DE LA ADJUDICACIÓN: 70.862,60 € **CONTENIDO:** INFORME INDIVIDUAL DEL EMBALSE DE FLIX AÑO DE EJECUCIÓN: 2014 **FECHA ENTREGA:**

REFERENCIA IMÁGENES PORTADA:

Vista de la presa del embalse de Flix desde el punto de muestreo.

CITA DEL DOCUMENTO: Confederación Hidrográfica del Ebro (2014). Explotación de la red de seguimiento de embalses en aplicación de la Directiva Marco del Agua en la Demarcación Hidrográfica del Ebro. 208 págs. más anejos. Disponible en PDF en la web: http://www.chebro.es

El presente informe pertenece al Dominio Público en cuanto a los Derechos Patrimoniales recogidos por el Convenio de Berna. Sin embargo, se reconocen los Derechos de los Autores y de la Confederación Hidrográfica del Ebro a preservar la integridad del mismo, las alteraciones o la realización de derivados sin la preceptiva autorización administrativa con fines comerciales, o la cita de la fuente original en cuanto a la infracción por plagio o colusión. A los efectos prevenidos, las autorizaciones para uso no científico del contenido deberán solicitarse a la Confederación Hidrográfica del Ebro.

ÍNDICE

			Pagina
1.	INTR	ODUCCIÓN	7
2.	2.1. 2.2.	ÉRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE Ámbito geológico y geográfico	7 8
		Registro de zonas protegidas	
3.	TRAI	BAJOS REALIZADOS	10
4.	DIAG	NÓSTICO DE LA SITUACIÓN ACTUAL	11
		Características fisicoquímicas de las aguas	
	4.2.	Hidroquímica del embalse	14
	4.3.	Fitoplancton y concentración de clorofila	15
	4.4.	Zooplancton	18
5.	DIAG	NÓSTICO DEL GRADO TRÓFICO	19
6.	DIAG	NÓSTICO DEL POTENCIAL ECOLÓGICO	21
1A	NEXO	I. REPORTAJE FOTOGRÁFICO	

ÍNDICE DE FIGURAS Y TABLAS

ÍNDICE DE FIGURAS CORRESPONDIENTES A GRÁFICOS Y FOTOS

Figura 1. Volumen embalsado y salida durante el año hidrológico 2013-2014	9
Figura 2. Localización de la estación de muestreo en el embalse	10
Figura 3. Perfil vertical de la temperatura y pH	11
Figura 4. Perfil vertical de la extinción luminosa y oxígeno disuelto	12
Figura 5. Perfil vertical de la conductividad	13
Figura 6. Fotografía de la cola del embalse	27
Figura 7. Fotografía del punto de acceso al embalse	27
ÍNDICE DE TABLAS	
Tabla 1. Características morfométricas del embalse de Flix	8
Tabla 2. Estructura y composición de la comunidad de fitoplancton	15
Tabla 3. Composición detallada de la comunidad de fitoplancton	16
Tabla 4. Estructura y composición de la comunidad de zooplancton	18
Tabla 5. Composición detallada de la comunidad de zooplancton	19
Tabla 6. Parámetros indicadores y rangos de estado trófico.	20
Tabla 7. Diagnóstico del estado trófico del embalse de Flix	20
Tabla 8. Parámetros y rangos para la determinación del potencial ecológico experimental.	21
Tabla 9. Combinación de los indicadores.	22
Tabla 10. Diagnóstico del potencial ecológico del embalse de Flix	22
Tabla 11. Valores de referencia propios del tipo (VR _t) y límites de cambio de clases de potencial ecológico de los indicadores de los elementos de calidad de embalses (Orden ARM/2656/2008).	23
Tabla 12. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo.	
Tabla 13. Combinación de los indicadores.	24
Tabla 14. Diagnóstico del potencial ecológico (PEnorm) del embalse de Flix.	25

1. INTRODUCCIÓN

El presente documento recoge los resultados de los trabajos realizados en el embalse de Flix durante los muestreos de 2014 y la interpretación de los mismos, a efectos de proporcionar una referencia que facilite la consulta y explotación de la información obtenida.

En general, se recurre a presentaciones gráficas y sintéticas de la información, acompañadas de un texto conciso, lo que permitirá una consulta ágil y rápida del documento.

En el **Anexo I** se presenta un reportaje fotográfico que refleja el estado del embalse durante el periodo estudiado (verano de 2014, correspondiente al año hidrológico 2013-2014).

En apartados sucesivos se comentan los siguientes aspectos:

- Resultados del estudio en el embalse (FASE DE CARACTERIZACIÓN) de todos los aspectos tratados (hidrológicos, fisicoquímicos y biológicos), que culminan en el diagnóstico del grado trófico.
- Clasificación del "Potencial Ecológico", tras la aplicación de los indicadores biológicos y fisicoquímicos propuestos en la Directiva Marco del Agua.

2. DESCRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE

2.1. Ámbito geológico y geográfico

El embalse de Flix se encuentra cercano a las Cordilleras Costero Catalanas, en la provincia de Tarragona, situado dentro del término municipal de Flix en la provincia de Tarragona. Regula las aguas del río Ebro.

En términos geológicos, el embalse de Flix se encuentra situado sobre materiales del Paleógeno como las lutitas, y del Cuaternario como depósitos aluviales, terrazas, gravas, limos, arenas y arcillas.

2.2. Características morfométricas e hidrológicas

Se trata de un embalse de pequeñas dimensiones, de geometría alargada y regular.

La cuenca vertiente al embalse de Flix tiene una superficie total de 81.274 ha.

El embalse tiene una capacidad total de 11 hm³. Caracterizado por una profundidad máxima que alcanza los 26,30 m.

En la tabla 1 se presentan las características morfométricas del embalse.

Tabla 1. Características morfométricas del embalse de Flix

Superficie de la cuenca	812740 ha	
Capacidad total N.M.N.	11 hm³	
Superficie inundada	290 ha	
Cota máximo embalse normal	41,10 msnm	

Tipo de clasificación: 12. Monomíctico, calcáreo de zonas no húmedas, pertenecientes a tramos bajos de ejes principales.

Se trata de un embalse monomíctico de geología calcárea, situado en zona no húmeda de la red principal. No existe termoclina en el momento del muestreo. La capa fótica llega al fondo, 8,2 metros, tanto con el medidor fotoeléctrico como con el Disco de Secchi.

El tiempo de residencia hidráulica media en el embalse de Flix para el año hidrológico 2013-2014 fue de 0,004 meses.

En la figura 1 se presentan los valores diarios del volumen embalsado y salida media correspondientes al año hidrológico 2013-2014.

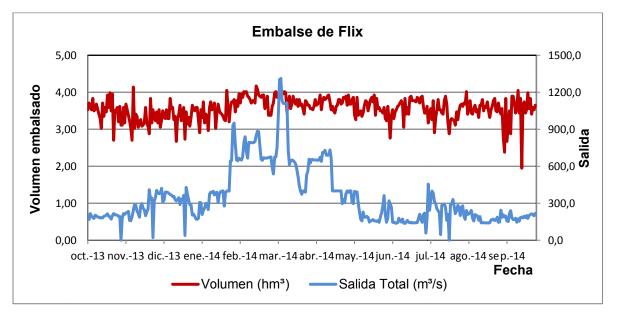


Figura 1. Volumen embalsado y salida durante el año hidrológico 2013-2014.

2.3. Usos del agua

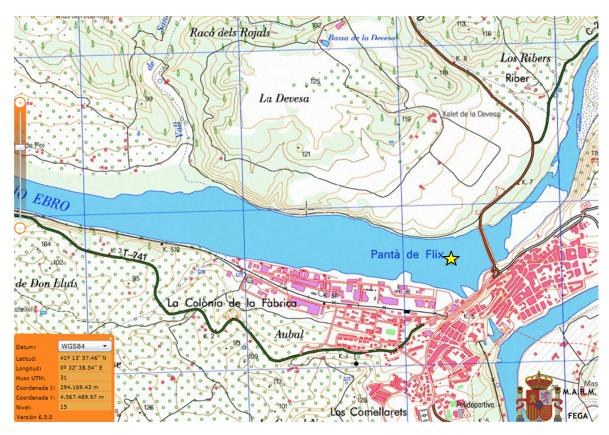
Las aguas del embalse se destinan principalmente al abastecimiento de la población.

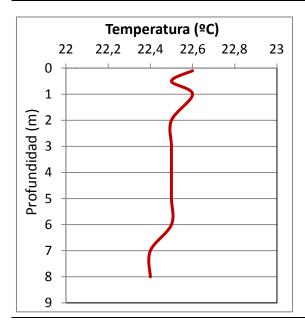
2.4. Registro de zonas protegidas

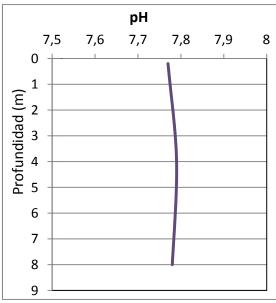
El embalse de Flix forma parte del Registro de Zonas Protegidas elaborado por la Confederación Hidrográfica del Ebro, en contestación al artículo 6 de la Directiva Marco del Agua, dentro de la categoría de zonas de extracción de agua para consumo humano.

3. TRABAJOS REALIZADOS

Para acometer la caracterización del embalse se ha ubicado una estación de muestreo en las inmediaciones de la presa (ver figura 2). Se ha completado una campaña de muestreo el 23 de Julio de 2014, en la que se midieron *in situ* los parámetros fisicoquímicos y la transparencia en la columna de agua, se tomó una muestra de agua integrada y otras puntuales para los análisis químicos y se realizaron muestreos de fitoplancton y zooplancton.

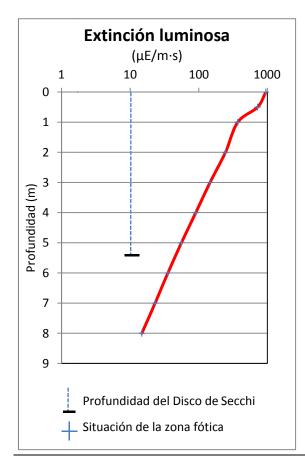



Figura 2. Localización de la estación de muestreo en el embalse.


4. DIAGNÓSTICO DE LA SITUACIÓN ACTUAL

4.1. Características fisicoquímicas de las aguas

De los resultados obtenidos se desprenden las siguientes apreciaciones:



La temperatura del agua oscila entre los 22,4 °C – en el fondo- y los 22,6 °C - máximo registrado en superficie-. En el momento del muestro (Julio 2014) no existe termoclina.

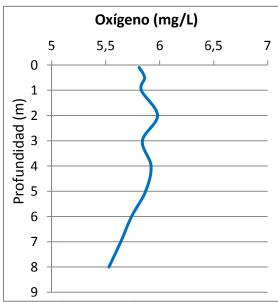
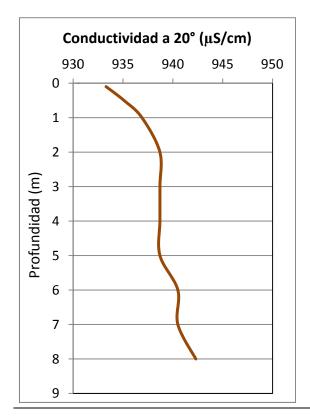

El pH del agua en la superficie es de 7,77. En el fondo del embalse el valor del pH es de 7,78.

Figura 3. Perfil vertical de la temperatura y pH.

La transparencia del agua registrada en la lectura de disco de Secchi es de 5,30 m, lo que supone una profundidad de la capa fótica superior a 8,2 metros, estando toda la columna de agua iluminada, como también indica la medición mediante célula fotoeléctrica.

La turbidez media de la zona eufótica (muestra integrada de 6 m de profundidad) fue de 2,25 UAF.



Las condiciones de oxigenación de la columna de agua alcanzan en el muestreo una concentración media de $5,80\,$ mg/L. No se han detectado condiciones anóxicas (<2 mg O_2/L).

Figura 4. Perfil vertical de la extinción luminosa y oxígeno disuelto.

La conductividad del agua es de 933 μ S/cm en la superficie y de 942 μ S/cm en el fondo del embalse.

Figura 5. Perfil vertical de la conductividad.

4.2. Hidroquímica del embalse

De los resultados analíticos obtenidos en la campaña de 2014 en la muestra integrada, se desprenden las siguientes apreciaciones:

- La concentración de fósforo total (PT) en la muestra integrada (zona fótica) fue de 37,04 µg P/L.
- La concentración de P soluble resultó ser de 23,03 μg P/L.
- La concentración de nitrógeno total (NT) fue de 1,98 mg N/L.
- La concentración de nitrógeno inorgánico oxidado (nitrato + nitrito, NIO) tomó un valor de 1,78 mg N/L.
- La concentración de amonio (NH₄) fue de 0,05 mg N/L.
- La concentración de sílice tomó un valor de 3,73 mg SiO₂/L_.
- La alcalinidad en este embalse (zona fótica) fue de 3,19 meg/L.

4.3. Fitoplancton y concentración de clorofila

En el análisis de fitoplancton se han identificado un total de 18 especies, distribuidas en los siguientes grupos taxonómicos:

BACILLARIOPHYCEAE	9
CHLOROPHYCEAE	5
CYANOBACTERIA	1
CRYPTOPHYCEAE	3
DINOPHYCEAE	3

La estructura de la comunidad de fitoplancton se resume en la tabla 2 y la composición detallada en la tabla 3.

Tabla 2. Estructura y composición de la comunidad de fitoplancton.

PARÁMETRO	UNIDAD	VALOR	
Nº CÉLULAS TOTALES	nº cel./ml	4013,39	
BIOVOLUMEN TOTAL	μm³/ml	641498	
Diversidad Shanno	on-Wiener	0,68	
CLASE PREDOMINANT	E (DENSIDAD)	Cyanobacteria	
Nº células/	ml	3664,87	
ESPECIE PREDOMINANTE (DENSIDAD)		Aphanizomenon gracile	
Nº células/	ml	3664,87	
CLASE PREDOMINANTE	(BIOVOLUMEN)	Cyanobacteria	
μm³/ml		359798	
ESPECIE PREDOMINANTE (BIOVOLUMEN)		Aphanizomenon gracile	
μm³/ml		359798	

La concentración de clorofila fue de 1,74 µg/L en la muestra integrada.

La composición de la población fitoplanctónica de la muestra integrada de la zona fótica indicando su abundancia y biovolumen, y la densidad cualitativa de la muestra integrada de fitoplancton del muestreo vertical con red de plancton, muestran los resultados de la tabla siguiente:

Tabla 3. Composición detallada de la comunidad de fitoplancton.

	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EMB_LW	FITOPLANCTON	cél./ml	μm³/ml	
	BACILLARIOPHYCEAE/CENTRALES/			I.
AULAGRAN0	Aulacoseira granulata	15,12	32694	2
AULGRANG2	Aulacoseira granulata var. angustissima			1
AULACGEN0	Aulacoseira sp.	1,26	8 1 9	
CYCLMENE0	Cyclotella meneghiniana	1,26	997	
CYCLTGEN0	Cyclotella sp. pequeña			1
	BACILLARIOPHYCEAE /PENNALES/			l
A CLINIMINI IO	Achnanthidium minutissimum (=Achnanthes			
ACHNMINU0	minutissima)	1,26	101	
AMPHOVAL0	Amphora ovalis			1
ASTEFORM0	Asterionella formosa			1
COCCPLAC0	Cocconeis placentula	7,56	6265	1
DIATVULG0	Diatoma vulgaris	1,26	10 4 80	
CYMBMINU0	Encyonema minutum (=Cymbella minuta)			1
FRAGCROT0	Fragilaria crotonensis	119,66	87 1 15	2
MELOVARI0	Melosira varians			1
NITZACIC0	Nitzschia acicularis	1,26	302	
NITZPALE0	Nitzschia palea			1
RHOICURV0	Rhoicosphenia abbreviata (=Rhoicosphenia			
KHOICUKVU	curvata)	6,30	75!98	1
FRAGULNA0	Ulnaria ulna (=Fragilaria ulna)			1
	CHLOROPHYTA		1	•
CARTEGEN0	Carteria sp.	10,08	21612	
COELASTR0	Coelastrum astroideum			2
COELMICR0	Coelastrum microporum	90,69	59:36	1
COENHIND0	Coenochloris hindakii			2
DICTYGEN0	Dictyosphaerium sp.			1
OOCYMARS0	Oocystis marssonii			1
PEDIDUPL0	Pediastrum duplex	10,08	2519	2
PEDSIBIW2	Pediastrum simplex var. biwaense			1
PHACLENT0	Phacotus lenticularis	10,08	29:55	
SCENARMA0	Scenedesmus armatus (=Desmodesmus armatus)			1
SPHAPLAN0	Sphaerocystis planctonica	10,08	27/01	
CYANOBACTERIA			<u>I</u>	ı
APHAGRAC0	Aphanizomenon gracile	3664,87	359798	3
DOLICRAS0	Dolichospermum crassum			1
l .	I	1	İ	1

	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EMB_LW FITOPLANCTON		cél./ml	μm³/ml	
	CRYPTOPHYCEAE			
CRYPEROS0	Cryptomonas erosa	11,38	27200	
CRYPROST0	Cryptomonas rostratiformis (=Cryptomonas			
CKII KOSTO	curvata)	22,76	68640	
CRYPTGEN0	Cryptomonas sp.			1
PLAGLACU0	Plagioselmis (=Rhodomonas) lacustris	28,45	37/66	
	DINOPHYCEAE			
PERIUMBO0	Peridinium umbonatum			1
PERUMDEF2	Peridinium umbonatum var. deflandrei			1
	TOTALES BACILLARIOPHYCEAE	154,93	146372	
	TOTALES CHLOROPHYTA	131,00	35723	
	TOTALES CYANOBACTERIA	3664,87	359798	
	TOTALES CRYPTOPHYCEAE	62,59	99606	
	TOTALES ALGAS	4013,39	641498	

Nota: Entre paréntesis se cita el anterior nombre de la especie.

Clases de abundancia	% de presencia
1	<9
2	10-24
3	25-60
4	61-99
5	>99

4.4. Zooplancton

En el análisis de zooplancton de las muestras del embalse de Flix se han identificado un total de 17 especies, distribuidas en los siguientes grupos taxonómicos:

- 3 Cladocera
- 2 Copepoda
- 11 Rotifera
- 1 Mollusca

La estructura y composición de la comunidad de zooplancton se resume en la tabla 4:

Tabla 4. Estructura y composición de la comunidad de zooplancton.

PARÁMETRO	UNIDAD	VALOR		
PROFUNDIDAD	m	6,0		
DENSIDAD TOTAL	individuos/L		128,27	
BIOMASA TOTAL	μg/L		45,58	
Diversidad Sha	nnon-Wiener		3,07	
CLASE PREDOMINA	ANTE (DENSIDAD)		Rotíferos	
individ	uos/L	88,46		
ESPECIE PREDOMINANTE (DENSIDAD)			Polyarthra dolichoptera	
individuos/L			44,62	
CLASE PREDOMINANTE (BIOMASA)			Cladóceros	
μg/	L	21,54		
ESPECIE PREDOMII	NANTE (BIOMASA)	Daphnia cucullata		
μg/	L	13,85		
COLUMNA AGUA INTEGRADA (red vertical)		0 - 8 m		
CLADÓCEROS: 15,69 %	6 COPÉPODOS: 20	0,18 % ROTÍFEROS: 64,13 %		

La composición detallada de la población zooplanctónica presente en la muestra cuantitativa de zooplancton indicando la densidad y biomasa, y el porcentaje de las especies presentes en la muestra integrada de la red vertical, se muestran en la tabla 5:

Tabla 5. Composición detallada de la comunidad de zooplancton.

CÓDIGO	COMPOSICIÓN	ABUNDANCIA	BIOMASA	PORCENTAJE
TAXÓN	ZOOPLANCTON	Ind./L	mg/L	%
	CLADÓCEROS			
BOSMLONG0	Bosmina longirostris	3,08	4,00	2,75
CERIDUBI0	Ceriodapnia dubia	2,31	3,69	3,67
DAPHCUCU0	Daphnia cucullata	4,62	13,85	9,17
	Pleuroxus denticulatus	-	-	0,09
	COPÉPODOS			
ACANAMER0	Acanthocyclops americanus	19,81	8,53	12,39
COPINUMI0	Copidodiaptomus numidicus	0,77	5,46	7,80
	ROTÍFEROS			
ASPLPRIO0	Asplanchna priodonta	-	-	0,92
COLUOBTU0	Colurella obtusa	0,77	0,02	0,46
CONONATA0	Conochilus natans	-	-	1,83
CONOCGEN0	Conochilus sp	7,69	0,77	-
EUCHDILA0	Euchlanis dilatata	1,54	0,38	0,92
KELLOLON1	Kellicotia longispina longispina	1,54	0,08	0,09
KERACOCH0	Keratella cochlearis	12,31	0,62	10,09
KERCOTEC1	Keratella cochlearis tecta	3,08	0,15	5,50
KERAQUAD0	Keratella quadrata	1,54	0,19	0,05
KERATROP0	Keratella tropica	12,31	1,54	5,50
LEPAPATE0	Lepadella patella	1,54	0,06	0,23
POLYDOLI0	Polyarthra dolichoptera	44,62	2,28	19,27
SYNCKITI0	Synchaeta kitina	1,54	0,08	0,92
DREIPOLY0	<i>Dreissena polymorpha</i> (Mejillón cebra)	9,23	3,88	18,35
	Total Cladóceros	10,00	21,54	15,69
	Total Copépodos	20,58	13,99	20,18
	Total Rotíferos	88,46	6,17	64,13
	Total Otros	9,23	3,88	18,35
	Total	128,27	45,58	100,00

5. DIAGNÓSTICO DEL GRADO TRÓFICO

Se han considerando los indicadores especificados en la tabla 6, estableciéndose el estado trófico global del embalse según la metodología descrita en la sección 5 de la MEMORIA DEL ESTUDIO.

Tabla 6. Parámetros indicadores y rangos de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración P (µg P/L)	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L) epilimnion	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cel./ml)	<100	100-1000	1000-10000	10000-100000	>100000
VALOR PROMEDIO FINAL	> 4,2	3,4 - 4,2	2,6 - 3,4	1,8 - 2,6	< 1,8

En la tabla **7** se incluye el estado trófico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según la valoración de este estado trófico final.

Tabla 7. Diagnóstico del estado trófico del embalse de Flix.

INDICADOR	VALOR	ESTADO TRÓFICO
P TOTAL	37,04	Eutrófico
CLOROFILA a	1,74	Oligotrófico
DISCO SECCHI (DS)	5,30	Oligotrófico
DENSIDAD ALGAL	4013	Mesotrófico
ESTADO TRÓFICO FINAL	3,25	MESOTRÓFICO

Atendiendo a todos los criterios seleccionados, el fósforo total (PT) clasifica el embalse como eutrófico, la concentración de clorofila a y la transparencia (DS) establecen para el embalse un estado de oligotrofia y la densidad algal determina que el embalse se encuatra en un estado mesotrófico. Combinando todos los indicadores el estado trófico final para el embalse de FLIX ha resultado ser **MESOTRÓFICO**.

6. DIAGNÓSTICO DEL POTENCIAL ECOLÓGICO

a) Aproximación experimental (PEexp)

Se han considerando los indicadores especificados en la tabla 8, estableciéndose el potencial ecológico del embalse según la metodología descrita en la sección 6.3, apartado a) de la MEMORIA DEL ESTUDIO.

Tabla 8. Parámetros y rangos para la determinación del potencial ecológico experimental.

Indicador	Elementos	Parámetros	Máximo	Bueno	Moderado	Deficiente	Malo	
		Densidad algal (cel./ml)	<100	100-10 ³	10 ³ -10 ⁴	10 ⁴ -10 ⁵	>10 ⁵	
		Biomasa algal, Clorofila a (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25	
		Biovolumen algal (mm³/L)	<0,1	0,1-0,5	0,5-2	2-8	>8	
	Fitoplancton	Phytoplankton Assemblage Index (Q)	>4	3-4	2-3	1-2	<1	
Biológico		Trophic Index (TI)	<2,06	2,06-2,79	2,79-3,52	3,52-4,25	>4,25	
		Phytoplankton Trophic Index (PTI)	>4,2	3,4-4,2	2,6-3,4	1,8-2,6	<1,8	
		Phytoplankton Reservoir Trophic Index (PRTI)	<3,8	3,8-6,6	6,6-9,4	9,4-12,2	>12,2	
	Zooplancton	Zooplankton Reservoir Trophic Index (ZRTI)	<3,8	3,8-6,6	6,6-9,4	9,4-12,2	>12,2	
	INDICADOR BI	IOLÓGICO (1)	> 4, 2	3, 4 -4, 2	2,6-3,4	1, 8 -2, 6	< 1, 8	
	Transparencia	Profundidad Disco de Secchi (m)	>6	3-6	1, 5 -3	0, 7 -1,5	<0, 7	
Fisicoquímico	Oxigenación	Concentración O ₂ (mg O ₂ /L)	>8	8-6	6-4	4-2	<2	
	Nutrientes Concentración de PT (µg P/L)		0-4	4-10	10-35	35-100	>100	
INDICADOR FISICOQUÍMICO (2)			MPE	AS FUN	N			
	INDICADON I ISICO QUIMICO (2)			3,4-4,2	<3,4			

- (1) La valoración del indicador biológico se obtiene asignando la calificación del elemento de menor puntuación (fitoplancton o zooplancton) o peor calidad, según la metodología *one out. all out.*
- (2) La valoración del indicador fisicoquímico se obtiene realizando la media de las puntaciones obtenidas para los distintos elementos. Si la media de los 3 elementos es igual o superior a 4,2, se considera que se cumplen las condiciones fisicoquímicas propias del máximo potencial ecológico (MPE). Si se alcanzan o superan los 3,4 puntos, se considera que las condiciones fisicoquímicas aseguran el funcionamiento del ecosistema (AS.FUN). Si no se alcanzan los 3 puntos, el indicador fisicoquímico no asegura el funcionamiento del ecosistema (NO AS.FUN).

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico experimental final sigue el esquema de decisiones indicado en la tabla 9:

Tabla 9. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico Experimental		
Máximo	MPE	Máximo		
Máximo	As Fun	Bueno		
Máximo	No As Fun	Moderado		
Bueno	MPE	Bueno		
Bueno	As Fun	Bueno		
Bueno	No As Fun	Moderado		
Moderado	Indistinto	Moderado		
Deficiente	Indistinto	Deficiente		
Malo	Indistinto	Malo		

En la tabla 10 se incluye el potencial indicado por cada uno de los parámetros e indicadores, así como la catalogación de la masa de agua según el potencial ecológico final.

Tabla 10. Diagnóstico del potencial ecológico del embalse de Flix.

Indicador	Elementos	Elementos Parámetros		Potencial
		Densidad algal (cel./ml)	4013	Moderado
		Clorofila a (μg/L)	1,74	Bueno
		Biovolumen algal (mm³/L)	0,64	Moderado
B: 1/ :	Fitoplancton	Phytoplankton Assemblage Index (Q)	2,10	Moderado
Biológico		Phytoplankton Trophic Index (PTI)	3,13	Moderado
		Trophic Index (TI)	2,99	Moderado
		Phytoplankton Reservoir Trophic Index (PRTI)	7,58	Moderado
	Zooplancton	Zooplankton Reservoir Trophic Index (ZRTI)	8,99	Moderado
	INDICADOR BIOLÓGICO			
	Transparencia Disco de Secchi (m)		5,30	Bueno
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	5,80	Moderado
	Nutrientes Concentración de PT (μg P/L)		37,04	Deficiente
	INDICADOR FISICOQUÍMICO			
	POTENCIAL ECOLÓGICO PEexp			

b) Aproximación normativa (PEnorm)

Se han considerado los indicadores, los valores de referencia y los límites de clase B⁺/M (Bueno o superior/Moderado), M/D (Moderado/Deficiente) y D/M (Deficiente/Malo), así como sus ratios de calidad ecológica (RCE), especificados en las tablas 11 y 12, estableciéndose el potencial ecológico del embalse según la metodología descrita en la sección 6.3, apartado b) de la MEMORIA DEL ESTUDIO.

 $\textbf{Tabla 11.} \ \ \text{Valores de referencia propios del tipo (VR_t) y l\'imites de cambio de clase de potencial ecológico de los indicadores de los elementos de calidad de embalses (Orden ARM/2656/2008).}$

Tine Flowerts		D	la dia ada a	V/D	B ⁺ /M	M/D	D/M
Tipo	Elemento	Parámetro	Indicador	VR _t	(RCE)	(RCE)	(RCE)
		Diamaga	Clorofila a mg/m ³	2,00	0,211	0,14	0,07
Tipo 1	Fitoplancton	Biomasa	Biovolumen mm ³ /L	0,36	0,189	0,126	0,063
тіро і	Fitopiancton	Composición	Índice de Catalán (IGA)	0,10	0,974	0,649	0,325
		Composicion	Porcentaje de cianobacterias	0,00	0,908	0,607	0,303
		Biomasa	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
T: 7	Cita alamata a	ыотпаѕа	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 7	Fitoplancton	Camanasiaién	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		D:	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
T: 0	F:41 4	Biomasa ton Composición	Biovolumen mm³/L	0,76	0,362	0,24	0,12
Tipo 9	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
			Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
			Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Ti 10	F:41 4		Biovolumen mm³/L	0,76	0,362	0,24	0,12
Tipo 10	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Biomasa	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
T: 44	F-1 1		Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 11	Fitoplancton	Composición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composition	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Biomasa on Composición	Clorofila a mg/m ³	2,40	0,195	0,13	0,065
T: 10			Biovolumen mm³/L	0,63	0,175	0,117	0,058
Tipo 12 Fito	Fitoplancton		Índice de Catalán (IGA)	1,50	0,929	0,619	0,31
			Porcentaje de cianobacterias	0,10	0,686	0,457	0,229
		Biomasa Composición	Clorofila a mg/m ³	2,10	0,304	0,203	0,101
Ti 40	F:41 4		Biovolumen mm ³ /L	0,43	0,261	0,174	0,087
Tipo 13	Fitoplancton		Índice de Catalán (IGA)	1,10	0,979	0,653	0,326
			Porcentaje de cianobacterias	0,00	0,931	0,621	0,31

Tabla 12. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo.

			RANGOS DEL RCE					
Indicador	Elementos	Parámetros	Máximo	Bueno	Moderado	Deficiente	Malo	
		Clorofila a (µg/L)	≥ 1	0,99 – 0,195	0,194 - 0,13	0,12 - 0,065	< 0,065	
Dial4 size	Fitantanatan	Biovolumen algal (mm³/L)	≥ 1	0,99 – 0,175	0,174 – 0,117	0,116 - 0,058	< 0,058	
Biológico	Fitoplancton	Índice de Catalán (IGA)	≥ 1	0,99 - 0,929	0,928 – 0,619	0,618 – 0,31	< 0,31	
		Porcentaje de cianobacterias	≥ 1	0,99 - 0,686	0,685 – 0,457	0,456 - 0,229	< 0,229	
			Máximo	Bueno	Moderado	Deficiente	Malo	
INDICADOR BIOLÓGICO			> 0,8	0,6-0,8	0,4-0,6	0,2-0,4	< 0,2	
			•				•	
			RANGOS DE VALORES					
Indicador	Elementos	Parámetros	Máximo	Bueno	Moderado	Deficiente	Malo	
	Transparencia	Disco de Secchi (m)	>6	3-6	1, 5 -3	0, 7 -1,5	<0, 7	
Fisicoquímico Oxigenación O_2 hipolimnética (mg O_2 /L)		>8	8-6	6-4 4-2		<2		
	Nutrientes	Concentración de PT (µg P/L)	0-4	4-10	10-35	35-100	>100	
				AS FUN		NO AS FUN		
INDI	INDICADOR FISICOQUÍMICO			3,4-4,2		<3,4		

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico normativo final sigue el esquema de decisiones indicado en la tabla 13.

Tabla 13. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico Normativo		
Máximo	MPE	Máximo		
Máximo	As Fun	Bueno		
Máximo	No As Fun	Moderado		
Bueno	MPE	Bueno		
Bueno	As Fun	Bueno		
Bueno	No As Fun	Moderado		
Moderado	Indistinto	Moderado		
Deficiente	Indistinto	Deficiente		
Malo	Indistinto	Malo		

En la tabla 14 se incluye el potencial indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según el potencial ecológico final (*PEnorm*) tras pasar el filtro del indicador fisicoquímico.

Tabla 14. Diagnóstico del potencial ecológico (PEnorm) del embalse de Flix.

Indicador	dor Elementos Parámetro Indicador		Indicador	Valor	RCE	RCI	ET	PEnorm
			Clorofila a (µg/L)	1,74	1,38	1,1	9	Máximo
		Biomasa	Biovolumen algal (mm³/L)	0,64	0,98	0,9	9	Bueno
			Media			1,0	9	
Biológico	Fitoplancton		Índice de Catalán (IGA)	66,53	0,837	0,5	64	Deficiente
		Composición	Porcentaje de cianobacterias	56,09	0,44	0,3	8	Deficiente
			Media			0,4	6	
	Media global					0,7	'8	
	INDIC	ADOR BIOLÓGIC	0	0,78				BUENO
				•				
Indica	ador	Elementos	Indicador	,	Valor I			PEnorm
		Transparencia	Disco de Secchi (m)	5,30			Bueno	
Fisicoquímico)	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	5,80			Moderado	
	Nutrientes Concentración de PT (µg P/L)						Deficiente	
	INDICADOR FISICOQUÍMICO				3,0			NO AS FUN
	POTENCIAL ECOLÓGICO PEnorm				М	ODER.	ADO	

ANEXO I. REPORTAJE FOTOGRÁFICO

Figura 6. Vista de la cola del embalse

Figura 7. Vista del punto de acceso al embalse