

EXPLOTACIÓN DE LA RED DE SEGUIMIENTO DE EMBALSES EN APLICACIÓN DE LA DIRECTIVA MARCO DEL AGUA EN LA DEMARCACIÓN HIDROGRÁFICA DEL EBRO

INFORME FINAL DEL EMBALSE DE MEZALOCHA

ÁREA DE CALIDAD DE AGUAS CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

EXPLOTACIÓN DE LA RED DE SEGUIMIENTO DE EMBALSES EN APLICACIÓN DE LA DIRECTIVA MARCO DEL AGUA EN LA DEMARCACIÓN HIDROGRÁFICA DEL EBRO

PROMOTOR:

CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

SERVICIO:

CONTROL DEL ESTADO ECOLÓGICO

DIRECCIÓN DEL PROYECTO:

Concha Durán Lalaguna y María José Rodríguez Pérez

EMPRESA CONSULTORA:

Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universidad de Valencia Estudi General

EQUIPO DE TRABAJO:

Área de Limnología, dirigida por Dr. Eduardo Vicente Pedrós, Catedrático de Ecología. Director del Estudio.

PRESUPUESTO DE LA ADJUDICACIÓN:

70.862,60€

CONTENIDO:

INFORME INDIVIDUAL DEL EMBALSE DE MEZALOCHA

AÑO DE EJECUCIÓN:

2014

FECHA ENTREGA:

DICIEMBRE 2014

REFERENCIA IMÁGENES PORTADA:

Vista de la presa del embalse de Mezalocha desde el punto de muestreo.

CITA DEL DOCUMENTO: Confederación Hidrográfica del Ebro (2014). Explotación de la red de seguimiento de embalses en aplicación de la Directiva Marco del Agua en la Demarcación Hidrográfica del Ebro. 20ì Ápágs. más anejos. Disponible en PDF en la web: http://www.chebro.es

El presente informe pertenece al Dominio Público en cuanto a los Derechos Patrimoniales recogidos por el Convenio de Berna. Sin embargo, se reconocen los Derechos de los Autores y de la Confederación Hidrográfica del Ebro a preservar la integridad del mismo, las alteraciones o la realización de derivados sin la preceptiva autorización administrativa con fines comerciales, o la cita de la fuente original en cuanto a la infracción por plagio o colusión. A los efectos prevenidos, las autorizaciones para uso no científico del contenido deberán solicitarse a la Confederación Hidrográfica del Ebro.

ÍNDICE

			Página
1.	INTF	RODUCCIÓN	7
2.	DES	CRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE	7
	2.1.	Ámbito geológico y geográfico	7
	2.2.	Características morfométricas e hidrológicas	8
	2.3.	Usos del agua	8
	2.4.	Registro de zonas protegidas	9
3.	TRA	BAJOS REALIZADOS	10
4.	DIAC	SNÓSTICO DE LA SITUACIÓN ACTUAL	11
	4.1.	Características físico-químicas de las aguas	
	4.2.	Hidroquímica del embalse	14
	4.3.	Fitoplancton y concentración de clorofila	15
	4.4.	Zooplancton	18
5.	DIAC	SNÓSTICO DEL GRADO TRÓFICO	21
6.	DIAC	SNÓSTICO DEL POTENCIAL ECOLÓGICO	22
1A	NEXO	I. REPORTAJE FOTOGRÁFICO	

ÍNDICE DE FIGURAS Y TABLAS

ÍNDICE DE FIGURAS CORRESPONDIENTES A GRÁFICOS Y FOTOS

Figura 1. Volumen embaisado y salida durante el ano nidrologico 2013-2014	9
Figura 2. Localización de la estación de muestreo en el embalse	10
Figura 3. Perfil vertical de la temperatura y pH	11
Figura 4. Perfil vertical de la extinción luminosa y oxígeno disuelto	12
Figura 5. Perfil vertical de la conductividad	13
Figura 6. Perfil vertical de la clorofila a	16
Figura 7. Fotografía de la cola del embalse	28
Figura 8. Fotografía del punto de acceso al embalse	28
NDICE DE TABLAS	
Tabla 1. Características morfométricas del embalse de Mezalocha	8
Tabla 2. Estructura y composición de la comunidad de fitoplancton	15
Tabla 3. Composición detallada de la comunidad de fitoplancton	16
Tabla 4. Estructura y composición de la comunidad de zooplancton	19
Tabla 5. Composición detallada de la comunidad de zooplancton	20
Tabla 6. Parámetros indicadores y rangos de estado trófico.	21
Tabla 7. Diagnóstico del estado trófico del embalse de Mezalocha.	21
Tabla 8. Parámetros y rangos para la determinación del potencial ecológico experimental.	22
Tabla 9. Combinación de los indicadores.	23
Tabla 10. Diagnóstico del potencial ecológico del embalse de Mezalocha	23
Tabla 11. Valores de referencia propios del tipo (VR _t) y límites de cambio de clase de potencial ecológico de los indicadores de los elementos de calidad de embalses (Orden ARM/2656/2008)	24
Tabla 12. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo	
Tabla 13. Combinación de los indicadores	25
Tabla 14. Diagnóstico del potencial ecológico (PEnorm) del embalse del Ebro.	26

1. INTRODUCCIÓN

El presente documento recoge los resultados de los trabajos realizados en el embalse de Mezalocha durante los muestreos de 2014 y la interpretación de los mismos, a efectos de proporcionar una referencia que facilite la consulta y explotación de la información obtenida.

En general, se recurre a presentaciones gráficas y sintéticas de la información, acompañadas de un texto conciso, lo que permitirá una consulta ágil y rápida del documento.

En el **Anexo I** se presenta un reportaje fotográfico que refleja el estado del embalse durante el periodo estudiado (verano 2014, correspondiente al año hidrológico 2013-2014).

En apartados sucesivos se comentan los siguientes aspectos:

- Resultados del estudio en el embalse (FASE DE CARACTERIZACIÓN) de todos los aspectos tratados (hidrológicos, fisicoquímicos y biológicos), que culminan en el diagnóstico del grado trófico.
- Clasificación del "Potencial Ecológico", tras la aplicación de los indicadores biológicos y fisicoquímicos propuestos en la Directiva Marco del Agua.

2. DESCRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE

2.1. Ámbito geológico y geográfico

En sentido amplio, la cuenca del Embalse de Mezalocha, se enclava entre materiales del Jurásico y Cuaternario, pertenecientes a las Eras del Mesozoico y del Cenozoico.

Concretamente, del Jurásico Piso Kimmeridgiense -Malm (Fm. Ritmita calcárea de loriguilla y calizas con oncolitos de Higueruelas), con calizas y margocalizas y calizas con oncolitos. Y del Cuaternario con colusiones compuestos de cantos angulosos en matriz arcillosa; conos de deyección con gravas, arenas, limos y arcillas; y terrazas con cantos y gravas.

El embalse de Mezalocha se sitúa dentro del término municipal de Mezalocha en la provincia de Zaragoza. Regula las aguas del río Huerva.

2.2. Características morfométricas e hidrológicas

Se trata de un embalse de pequeñas dimensiones, de geometría alargada y ondulada.

La cuenca vertiente al embalse de Mezalocha tiene una superficie total de 1033,71 km². El embalse tiene una capacidad total de 3,92 hm³., que coincide con la capacidad útil. Caracterizado por una profundidad media de 10 m., siendo la profundidad máxima de 26 m.

En la tabla 1 se presentan las características morfométricas del embalse.

Tabla 1. Características morfométricas del embalse de Mezalocha

Capacidad total N.M.N.	3,92 hm ³	
Capacidad útil	3,92 hm ³	
Superficie inundada	75 ha	
Cota máximo embalse normal	472,5 msnm	

Tipo de clasificación: 10. Monomíctico, calcáreo de zonas no húmedas, pertenecientes a ríos de cabecera y tramos altos.

Se trata de un embalse monomíctico, ubicado en zonas no húmedas de cabecera y tramos altos de geología calcárea. En el momento del muestreo, no existe termoclina. El límite inferior de la capa fótica se encuentra a 6 metros de profundidad determinado mediante medidor fotoeléctrico, mientras que el valor estimado mediante el Disco de Secchi fue de 3,9 m.

El tiempo de residencia hidráulica media en el embalse de Mezalocha para el año hidrológico 2013-2014 ha sido de 1,91 meses.

En la figura 1 se presentan los valores diarios de salida media del embalse correspondientes al año hidrológico 2013-2014.

2.3. Usos del agua

Las aguas del embalse se destinan principalmente a los regadíos. Los usos recreativos y deportivos también son significativos, permitiéndose en este embalse la navegación a remo, no siendo apto para navegar a motor y a vela.

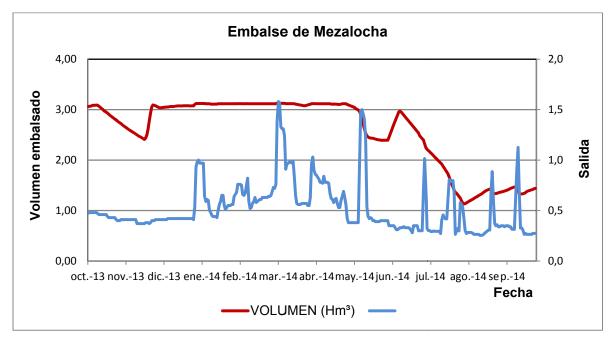


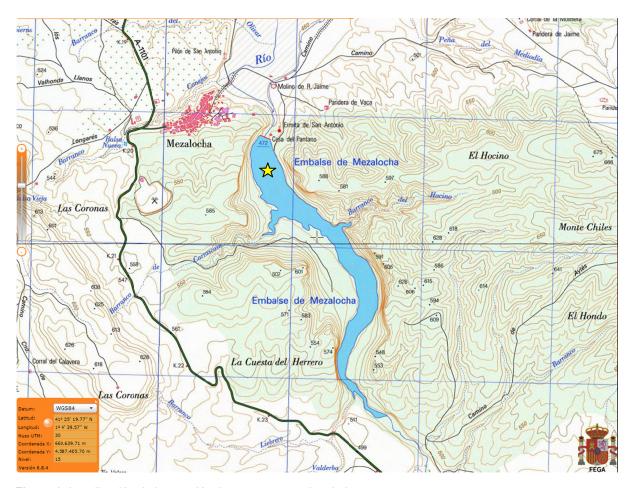
Figura 1. Volumen embalsado y salida durante el año hidrológico 2013-2014.

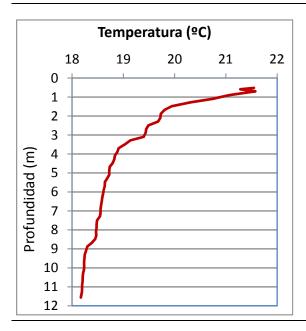
2.4. Registro de zonas protegidas

El embalse de Mezalocha forma parte del Registro de Zonas Protegidas elaborado por la Confederación Hidrográfica del Ebro, en contestación al artículo 6 de la Directiva Marco del Agua, en la categoría de zonas de protección de hábitat o especie (Punto Red Natura 2000: ZEPA ES0000300, Río Huerva y Las Planas).

3. TRABAJOS REALIZADOS

Para acometer la caracterización del embalse se ha ubicado una estación de muestreo en las inmediaciones de la presa (ver figura 2). Se ha completado una campaña de muestreo el 15 de Julio de 2014, en la que se midieron *in situ* los parámetros físico-químicos y la transparencia en la columna de agua, se tomó una muestra de agua integrada para los análisis químicos y se realizaron muestreos de fitoplancton y zooplancton.

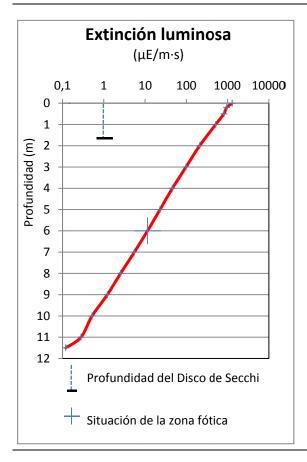



Figura 2. Localización de la estación de muestreo en el embalse.

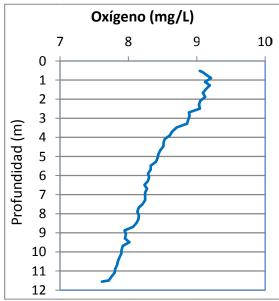
4. DIAGNÓSTICO DE LA SITUACIÓN ACTUAL

4.1. Características físico-químicas de las aguas

De los resultados obtenidos se desprenden las siguientes apreciaciones:

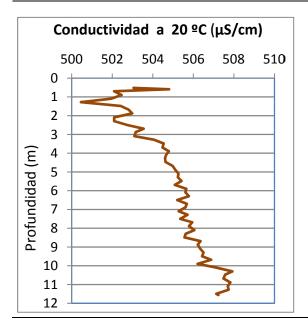

La temperatura del agua oscila entre los 18,17 °C en el fondo y los 21,55 °C - máximo registrado en superficie-. En el momento del muestreo (Julio 2014) no existe termoclina.

El pH del agua en superficie es de 8,40 y, en el fondo de 8,16.


Figura 3. Perfiles verticales de la temperatura y el pH.

La transparencia del agua registrada en la lectura del disco de Secchi (DS) es de 1,55 m, lo que supone una profundidad de la capa fótica en torno a 3,9 metros. Mientras que la medición mediante célula fotoeléctrica, indica una profundidad de la capa fótica de 6 m.

La turbidez media de la zona eufótica (muestra integrada a 6 m de profundidad) fue de 5,68 UAF.



Las condiciones de oxigenación de la columna de agua alcanzan en el punto de muestreo una concentración media de 8,41 mg/L. No se han detectado condiciones anóxicas (<2 mg O_2/L).

Figura 4. Perfiles verticales de la extinción luminosa y el oxígeno disuelto.

La conductividad del agua es de 503 μ S/cm en la superficie y de 507 μ S/cm en el fondo.

Figura 5. Perfil vertical de la conductividad.

4.2. Hidroquímica del embalse

De los resultados analíticos obtenidos en la campaña de 2014 en la muestra integrada, se desprenden las siguientes apreciaciones:

- La concentración de fósforo total (PT) en la muestra integrada (zona fótica) fue de 17,17
 µg P/L.
- La concentración de P soluble fue de 0,66 μg P/L.
- La concentración de nitrógeno total (NT) fue de 3,57 mg N/L.
- La concentración de nitrógeno inorgánico oxidado (nitrato + nitrito, NIO) tomó un valor de 3,23 mg N/L.
- La concentración de amonio (NH₄) resultó ser de 0,025 mg N/L.
- La concentración de sílice tomó un valor de 1,65 mg SiO₂/L
- La alcalinidad en este embalse (zona fótica) fue de 3,01 meq/L.

4.3. Fitoplancton y concentración de clorofila.

En el análisis realizado se han identificado un total de 28 especies, distribuidas en los siguientes grupos taxonómicos:

BACILLARIOPHYCEAE	3
CHRYSOPHYCEAE	4
CHLOROPHYCEAE	13
CYANOBACTERIA	1
CRYPTOPHYCEAE	4
DINOPHYCEAE	1
EUGLENOPHYCEAE	2

La estructura de la comunidad de fitoplancton se resume en la tabla 2 y la composición detallada en la tabla 3.

Tabla 2. Estructura y composición de la comunidad de fitoplancton.

PARÁMETRO	UNIDAD	VALOR	
N° CELULAS TOTALES	nº cel/ml	10501,01	
BIOVOLUMEN TOTAL	μm³/ml	563843	
Diversidad Shannon	n-Wiener	2,17	
CLASE PREDOMINANTE	(DENSIDAD)	Chlorophyceae	
Nº células/ml		8477,43	
ESPECIE PREDOMINANTE (DENSIDAD)		Coenochloris hindakii	
Nº células/ml		5500,10	
CLASE PREDOMINANTE (I	BIOVOLUMEN)	Bacillariophyceae	
μm³/ml		238861	
ESPECIE PREDOMINANTE (BIOVOLUMEN)		Cyclotella radiosa	
μm³/ml		234519	

La concentración de clorofila fue de 3,36 μ g/L en la muestra integrada, cuya profundidad se ha señalado en la figura 6 con una línea roja. El perfil vertical realizado mediante fluorimetría muestra un máximo de 4,2 μ g/L a 1 metro de profundidad.

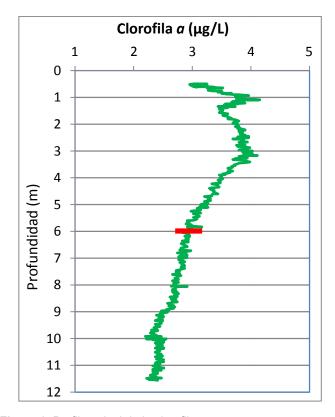


Figura 6. Perfil vertical de la clorofila a.

La composición de la población fitoplanctónica de la muestra integrada de la zona fótica indicando su abundancia y biovolumen, muestra los resultados de la tabla 3 siguiente:

Tabla 3. Composición detallada de la comunidad de fitoplancton.

	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EMB_LW	FITOPLANCTON	cél./ml	µm³/ml	
	BACILLARIOPHYCEAE/CENTRALES/			
CYCLRADI0	Cyclotella radiosa	933,12	234519	3
	BACILLARIOPHYCEAE /PENNALES/			
ACHNMINU0	Achnanthidium minutissimum (=Achnanthes			
AGINVIIINGO	minutissima)			1
DIATVULG0	Diatoma vulgaris	0,94	3873	
NITZACIC0	Nitzschia acicularis			1
NITZPALE0	Nitzschia palea	0,94	469	1
NITZSIGO0	Nitzschia sigmoidea			1
FRAGULNA0	Ulnaria ulna (=Fragilaria ulna)			1

	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EMB_LW	FITOPLANCTON	cél./ml	μm³/ml	
	CHRYSOPHYCEAE			
CHRYOGEN0	Chrysochromulina sp.	45,52	1457	
DINODIVE0	Dinobryon divergens	0,94	165	
KEPHLITT0	Kephyrion littorale	11,38	572	
OCHROGEN0	Ochromonas sp.	22,76	4087	
	CHLOROPHYTA		I	
ANKYJUDA0	Ankyra judayi			1
CARTEGEN0	Carteria sp.	13,98	23733	
CLOSACIR0	Closteriopsis acicularis	2,83	464	1
COENHIND0	Coenochloris hindakii	5500,10	77756	3
CHLAMGEN0	Chlamydomonas sp.	22,76	11059	
DICTYGEN0	Dictyosphaerium sp.			1
DIDYCOMA0	Didymocystis comasii	2344,18	24548	2
COELDETIA	Hariotina reticulata (=Coelastrum			
COELRETI0	reticulatum)			1
PEDISIMP0	Monactinus simplex (=Pediastrum simplex)			1
MONODYBO0	Monoraphidium dybowskii	11,38	295	
MONOKOMA0	Monoraphidium komarkovae	34,14	1528	1
MONOMINU0	Monoraphidium minutum	11,38	279	
OOCYLACU0	Oocystis lacustris	91,04	5339	
OOCYMARS0	Oocystis marssonii			2
OOCYPARV0	Oocystis parva	352,76	20634	2
PANDMORU0	Pandorina morum			1
PHACLENT0	Phacotus lenticularis	34,14	8580	
SCENQUAD0	Scenedesmus quadricauda	13,23	520	
TETRKOMA0	Tetrastrum komarekii	45,52	546	1
	CYANOBACTERIA			
APHANGEN0	Aphanothece sp.	682,77	965	
CHROMINU0	Chroococcus minutus			1
PLANRUBE0	Oscillatoria rubescens			1
	CRYPTOPHYCEAE		l	•
CRYPEROS0	Cryptomonas erosa	4,72	11291	1
CRYPMARS0	Cryptomonas marsonii	3,78	2153	
PLAGLACU0	Plagioselmis (=Rhodomonas) lacustris	261,73	34645	1
	Plagioselmis nannoplanctica			
PLAGNANN0	(=Rhodomonas lacustris var.			
	nannoplanctica)	45,52	2669	
	DINOPHYCEAE			•
CERAHIRU0	Ceratium hirundinella	1,89	82643	1
EUGLAGIL0	Euglena agilis	6,61	4875	2
EUGLOXYU0	Euglena oxyuris			1
EUGLEGEN0	Euglena sp.	0,94	4180	
PHACCAUD0	Phacus caudatus			1

	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EMB_LW	FITOPLANCTON	cél./ml	µm³/ml	
	TOTALES EUGLENOPHYCEAE	7,56	9055	
	TOTALES BACILLARIOPHYCEAE	935,01	238861	
	TOTALES CHRYSOPHYCEAE	80,60	6281	
	TOTALES CHLOROPHYTA	8477,43	175280	
	TOTALES CYANOBACTERIA	682,77	965	
	TOTALES CRYPTOPHYCEAE	315,75	50758	
	TOTALES DINOPHYCEAE	1,89	82643	
	TOTALES EUGLENOPHYCEAE	7,56	9055	
	TOTALES ALGAS	10501,01	563843	

Nota: Entre paréntesis se cita el anterior nombre de la especie.

Clases de	% de
abundancia	presencia
1	<9
2	10-24
3	25-60
4	61-99
5	>99

4.4. Zooplancton

En el análisis de zooplancton de las muestras del embalse de Mezalocha se han identificado un total de 8 especies, distribuidas en los siguientes grupos taxonómicos:

- 4 Cladocera
- 3 Copepoda
- 1 Rotifera

La estructura y composición de la comunidad de zooplancton se resume en la tabla 4:

Tabla 4. Estructura y composición de la comunidad de zooplancton.

PARÁMETRO	UNIDAD		VALOR	
PROFUNDIDAD	m	1,0		
DENSIDAD TOTAL	individuos/L	184,62		
BIOMASA TOTAL	μg/L		456,50	
Diversidad Shannon-Wiener			2,00	
CLASE PREDOMINA	ANTE (DENSIDAD)		Copépodos	
individ	uos/L	98,08		
ESPECIE PREDOMIN	IANTE (DENSIDAD)	Copidodiaptomus numidicus		
individ	uos/L	67,31		
CLASE PREDOMIN	ANTE (BIOMASA)	Copépodos		
μg/	L	307,09		
ESPECIE PREDOMII	NANTE (BIOMASA)	Copidodiaptomus numidicus		
μg/L		297,27		
COLUMNA AGUA INTEGRADA (red vertical)		0 - 11		
CLADÓCEROS: 37,84	% COPÉPODOS: 5	55,97 % ROTÍFEROS: 6,19 %		

La composición detallada de la población zooplanctónica presente en la muestra cuantitativa de zooplancton indicando la densidad y biomasa, y el porcentaje de las especies presentes en la muestra integrada de la red vertical, se muestran en la tabla 5 siguiente:

Tabla 5. Composición detallada de la comunidad de zooplancton.

CÓDIGO	COMPOSICIÓN	ABUNDANCIA	BIOMASA	PORCENTAJE
TAXÓN	ZOOPLANCTON	Ind./L	mg/L	%
	CLADÓCEROS			
BOSMLONG0	Bosmina longirostris	0,38	0,50	0,69
CERIPULC0	Ceriodaphnia pulchella	47,69	57,23	22,02
DAPHCUCU0	Daphnia cucullata	6,15	18,46	2,06
DIAPMONG0	Diaphanosoma mongolianum	29,23	73,08	13,07
	COPÉPODOS			
ACANAMER0	Acanthocyclops americanus	0,19	0,47	0,17
COPINUMI0	Copidodiaptomus numidicus	67,31	297,27	35,09
CYCLVICI0	Cyclops vicinus	-	-	0,07
CYCLOPFAM	Ciclópido	30,58	9,35	20,64
	ROTÍFEROS			
ASPLPRIO0	Asplanchna priodonta	-	-	0,69
KERACOCH0	Keratella cochlearis	-	-	0,69
POLYVULG0	Polyarthra vulgaris	3,08	0,14	4,82
	Total Cladóceros	83,46	149,27	37,84
	Total Copépodos	98,08	307,09	55,97
	Total Rotíferos	3,08	0,14	6,19
	Total	184,62	456,50	100,00

5. DIAGNÓSTICO DEL GRADO TRÓFICO

Se han considerado los indicadores especificados en la tabla 6 para los valores medios en el embalse, estableciéndose el estado trófico global del embalse según la metodología descrita en la sección 5 de la MEMORIA DEL ESTUDIO.

Tabla 6. Parámetros indicadores y rangos de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración P (µg P/L)	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L) epilimnion	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cel./ml)	<100	100-1000	1000-10000	10000-100000	>100000
VALOR PROMEDIO FINAL	> 4,2	3,4 - 4,2	2,6 - 3,4	1,8 – 2,6	< 1,8

En la tabla 7 se incluye el estado trófico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según la valoración de este estado trófico final.

Tabla 7. Diagnóstico del estado trófico del embalse de Mezalocha.

INDICADOR	VALOR	ESTADO TRÓFICO
P TOTAL	17,17	Mesotrófico
CLOROFILA a	3,36	Mesotrófico
DISCO SECCHI	1,55	Mesotrófico
DENSIDAD ALGAL	10501	Eutrófico
ESTADO TROFICO FINAL	2,75	MESOTRÓFICO

Atendiendo a tres de cuatro criterios seleccionados, (fósforo total (PT), concentración de clorofila a y transparencia (DS)) califican el embalse como mesotrófico. Mientras que la densidad algal determina el embalse como eutrófico. Combinando todos los indicadores el estado trófico final para el embalse de MEZALOCHA ha resultado ser **MESOTRÓFICO**.

6. DIAGNOSTICO DEL POTENCIAL ECOLÓGICO

a) Aproximación experimental (PEexp)

Se han considerado los indicadores especificados en la tabla 8, estableciéndose el potencial ecológico del embalse según la metodología descrita en la sección 6.3, apartado a) de la MEMORIA DEL ESTUDIO.

Tabla 8. Parámetros y rangos para la determinación del potencial ecológico experimental.

Indicador	Elementos	Parámetros	Máximo	Bueno	Moderado	Deficiente	Malo
		Densidad algal (cel./ml)	<100	100-10 ³	10 ³ -10 ⁴	10 ⁴ -10 ⁵	>10 ⁵
		Biomasa algal, Clorofila <i>a</i> (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
		Biovolumen algal (mm³/L)	<0,1	0,1-0,5	0,5-2	2-8	>8
	Fitoplancton	Phytoplankton Assemblage Index (Q)	>4	3-4	2-3	1-2	<1
Biológico		Trophic Index (TI)	<2,06	2,06-2,79	2,79-3,52	3,52-4,25	>4,25
		Phytoplankton Trophic Index (PTI)	>4,2	3,4-4,2	2,6-3,4	1,8-2,6	<1,8
		Phytoplankton Reservoir Trophic Index (PRTI)	<3,8	3,8-6,6	6,6-9,4	9,4-12,2	>12,2
	Zooplancton	Zooplankton Reservoir Trophic Index (ZRTI)	<3,8	3,8-6,6	6,6-9,4	9,4-12,2	>12,2
	INDICADOR B	IOLÓGICO (1)	> 4, 2 3, 4 - 4, 2 2, 6 - 3, 4 1, 8 - 2, 6			< 1, 8	
	Transparencia	Profundidad Disco de Secchi (m)	>6	3-6	1, 5 -3	0, 7 -1,5	<0, 7
Fisicoquímico	Oxigenación	Concentración O ₂ (mg O ₂ /L)	>8	8-6	6-4	4-2	<2
	Nutrientes Concentración de PT (µg P/L)		0-4	4-10	10-35	35-100	>100
	INDICADOR FISICOQUÍMICO (2)			AS FUN	NO AS FUN		
'				3,4-4,2	<3,4		

- (1) La valoración del indicador biológico se obtiene asignando la calificación del elemento de menor puntuación (fitoplancton o zooplancton) o peor calidad, según la metodología *one out, all out*.
- (2) La valoración del indicador fisicoquímico se obtiene realizando la media de las puntaciones obtenidas para los distintos elementos. Si la media de los 3 elementos es igual o superior a 4,2 se considera que se cumplen las condiciones fisicoquímicas propias del máximo potencial ecológico (MPE). Si se alcanzan o superan los 3,4 puntos, se considera que las condiciones fisicoquímicas aseguran el funcionamiento del ecosistema (AS.FUN). Si no se alcanzan los 3,4 puntos, el indicador fisicoquímico no asegura el funcionamiento del ecosistema (NO AS.FUN).

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico experimental final sigue el esquema de decisiones indicado en la tabla 9:

Tabla 9. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico Experimental
Máximo	MPE	Máximo
Máximo	As Fun	Bueno
Máximo	No As Fun	Moderado
Bueno	MPE	Bueno
Bueno	As Fun	Bueno
Bueno	No As Fun	Moderado
Moderado	Indistinto	Moderado
Deficiente	Indistinto	Deficiente
Malo	Indistinto	Malo

En la tabla 10 se incluye el potencial indicado por cada uno de los parámetros e indicadores, así como la catalogación de la masa de agua según el potencial ecológico final.

Tabla 10. Diagnóstico del potencial ecológico del embalse de Mezalocha.

Indicador	Elementos	Parámetros	Valor	Potencial
		Densidad algal (cel./ml)	10501	Deficiente
		Clorofila a (µg/L)	3,36	Moderado
		Biovolumen algal (mm³/L)	0,54	Moderado
	Fitoplancton	Phytoplankton Assemblage Index (Q)	3,62	Bueno
Biológico		Phytoplankton Trophic Index (PTI)	3,33	Moderado
		Trophic Index (TI)	2,38	Bueno
		Phytoplankton Reservoir Trophic Index (PRTI)	7,03	Moderado
	Zooplancton	Zooplankton Reservoir Trophic Index (ZRTI)	11,18	Deficiente
	2,0	DEFICIENTE		
	Transparencia	Disco de Secchi(m)	1,55	Moderado
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	8,41	Máximo
	Nutrientes	Concentración de PT (µg P/L)	17,17	Moderado
INDICADOR FISICOQUÍMICO			3,7	AS FUN
POTENCIAL ECOLÓGICO			DE	FICIENTE

b) Aproximación normativa (*PEnorm*)

Se han considerado los indicadores, los valores de referencia y los límites de clase B⁺/M (Bueno o superior/Moderado), M/D (Moderado/Deficiente) y D/M (Deficiente/Malo), así como sus ratios de calidad ecológica (RCE), especificados en las tablas 11 y 12, estableciéndose el potencial ecológico del embalse según la metodología descrita en la sección 6.3, apartado b) de la MEMORIA DEL ESTUDIO.

Tabla 11. Valores de referencia propios del tipo (VR_t) y límites de cambio de clase de potencial ecológico de los indicadores de los elementos de calidad de embalses (Orden ARM/2656/2008).

Time Flowers		D (4	la dia adam	\/D	B⁺/M	M/D	D/M
Tipo	Elemento	Parámetro	Indicador	VR _t	(RCE)	(RCE)	(RCE)
		D:	Clorofila a mg/m ³	2,00	0,211	0,14	0,07
Tipo 1	Fitoplancton	Biomasa	Biovolumen mm ³ /L	0,36	0,189	0,126	0,063
Проп	Портапской	Composición	Índice de Catalán (IGA)	0,10	0,974	0,649	0,325
		Composicion	Porcentaje de cianobacterias	0,00	0,908	0,607	0,303
		Diamaga	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Tine 7	Fitanlanatan	Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 7	Fitoplancton	Commonición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Diamaga	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Tine 0	Cita alamata a	Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 9	Fitoplancton	Composición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
			Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Biomasa cton Composición	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Tin - 40	F:41 4		Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 10	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
			Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Biomasa	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Tin - 44	F:41 4		Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 11	Fitoplancton	Composición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composicion	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		D:	Clorofila a mg/m ³	2,40	0,195	0,13	0,065
Ti 10	Fit and an atom	Biomasa	Biovolumen mm³/L	0,63	0,175	0,117	0,058
Tipo 12	Tipo 12 Fitoplancton	Composición	Índice de Catalán (IGA)	1,50	0,929	0,619	0,31
			Porcentaje de cianobacterias	0,10	0,686	0,457	0,229
		Biomasa	Clorofila a mg/m ³	2,10	0,304	0,203	0,101
Ti 40	F:41 4		Biovolumen mm ³ /L	0,43	0,261	0,174	0,087
Tipo 13	Fitoplancton	0	Índice de Catalán (IGA)	1,10	0,979	0,653	0,326
		Composición	Porcentaje de cianobacterias	0,00	0,931	0,621	0,31

Tabla 12. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo.

			RANGOS DEL RCE					
Indicador	Elementos	Parámetros	Máximo	Bueno	Moderado	Deficiente	Malo	
		Clorofila a (µg/L)	≥ 1	0,99 - 0,433	0,432 - 0,287	0,286 - 0,143	< 0,143	
Dial faire	Fitanlanatan	Biovolumen algal (mm³/L)	≥1	0,99 - 0,362	0,361 – 0,24	0,23 – 0,12	< 0,12	
Biológico	Fitoplancton	Índice de Catalán (IGA)	≥ 1	0,99 - 0,982	0,981 – 0,655	0,654 - 0,327	< 0,327	
		Porcentaje de cianobacterias	≥ 1	0,99 – 0,715	0,714 - 0,48	0,47 – 0,24	< 0,24	
			Máximo	Bueno	Moderado	Deficiente	Malo	
IN	INDICADOR BIOLÓGICO			0,6-0,8	0,4-0,6	0,2-0,4	< 0,2	
				•			•	
				RA	NGOS DE VALO	RES		
Indicador	Elementos	Parámetros	Máximo	Bueno	Moderado	Deficiente	Malo	
	Transparencia	Disco de Secchi (m)	>6	3-6	1, 5 -3	0, 7 -1,5	<0, 7	
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	>8	8-6	6-4	4-2	<2	
	Nutrientes	Concentración de PT (µg P/L)	0-4	4-10	10-35	35-100	>100	
				AS FUN	NO AS FUN			
INDICADOR FISICOQUÍMICO			>4,2	3,4-4,2		<3,4		

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico normativo final sigue el esquema de decisiones indicado en la tabla 13:

Tabla 13. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico Normativo
Máximo	MPE	Máximo
Máximo	As Fun	Bueno
Máximo	No As Fun	Moderado
Bueno	MPE	Bueno
Bueno	As Fun	Bueno
Bueno	No As Fun	Moderado
Moderado	Indistinto	Moderado
Deficiente	Indistinto	Deficiente
Malo	Indistinto	Malo

En la tabla 14 se incluye el potencial indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según el potencial ecológico final (*PEnorm*) tras pasar el filtro del indicador fisicoquímico.

Tabla 14. Diagnóstico del potencial ecológico (PEnorm) del embalse de Mezalocha.

Indicador	Elementos	Parámetro	Indicador	Valor	RCE	RCET	PEnorm	
		Biomasa	Clorofila a (µg/L)	3,36	0,77	0,84	Bueno	
			Biovolumen algal (mm ³ /L)	0,54	1,40	1,25	Máximo	
			Media			1,05		
Biológico	Fitoplancton		Índice de Catalán (IGA)	0,54	1,000	1,00	Máximo	
		Composición	Porcentaje de cianobacterias	0,00	1,00	1,00	Máximo	
			Media			1,00		
	Media global					1,02		
	INDICAL	OR BIOLÓGICO	0	1,02 MÁXIMO			MÁXIMO	
Indic	ador	Elementos	Indicador	,	Valor		PEnorm	
	Tı	ransparencia	Disco de Secchi (m)		1,55		Moderado	
Fisicoquímic	0	xigenación	O ₂ hipolimnética (mg O ₂ /L)	8,41		Máximo		
	Nutrientes Concentración de		Concentración de PT (µg P/L)	17,17			Moderado	
	INDICADOR FISICOQUÍMICO				3,7		AS FUN	
	POTENCIAL ECOLÓGICO PEnorm					BUENO		

ANEXO I. REPORTAJE FOTOGRÁFICO

Figura 7. Vista de la cola del embalse

Figura 8. Vista del punto de acceso