

EXPLOTACIÓN DE LA RED DE SEGUIMIENTO DE EMBALSES EN APLICACIÓN DE LA DIRECTIVA MARCO DEL AGUA EN LA DEMARCACIÓN HIDROGRÁFICA DEL EBRO

INFORME FINAL DEL EMBALSE DE VADIELLO

ÁREA DE CALIDAD DE AGUAS
CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

EXPLOTACIÓN DE LA RED DE SEGUIMIENTO DE EMBALSES EN APLICACIÓN DE LA DIRECTIVA MARCO DEL AGUA EN LA DEMARCACIÓN HIDROGRÁFICA DEL EBRO

PROMOTOR:

CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

SERVICIO:

CONTROL DEL ESTADO ECOLÓGICO

DIRECCIÓN DEL PROYECTO:

Concha Durán Lalaguna y María José Rodríguez Pérez

EMPRESA CONSULTORA:

Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universidad de Valencia Estudi General

EQUIPO DE TRABAJO:

Área de Limnología, dirigida por Dr. Eduardo Vicente Pedrós, Catedrático de Ecología. Director del Estudio.

PRESUPUESTO DE LA ADJUDICACIÓN:

70.862,60 €

CONTENIDO:

INFORME INDIVIDUAL DEL EMBALSE DE VADIELLO

AÑO DE EJECUCIÓN:

2014

FECHA ENTREGA:

DICIEMBRE 2014

REFERENCIA IMÁGENES PORTADA:

Vista del embalse de Vadiello desde el punto de toma de muestras.

CITA DEL DOCUMENTO: Confederación Hidrográfica del Ebro (2014). Explotación de la red de seguimiento de embalses en aplicación de la Directiva Marco del Agua en la Demarcación Hidrográfica del Ebro. 208 págs. más anejos. Disponible en PDF en la web: http://www.chebro.es

El presente informe pertenece al Dominio Público en cuanto a los Derechos Patrimoniales recogidos por el Convenio de Berna. Sin embargo, se reconocen los Derechos de los Autores y de la Confederación Hidrográfica del Ebro a preservar la integridad del mismo, las alteraciones o la realización de derivados sin la preceptiva autorización administrativa con fines comerciales, o la cita de la fuente original en cuanto a la infracción por plagio o colusión. A los efectos prevenidos, las autorizaciones para uso no científico del contenido deberán solicitarse a la Confederación Hidrográfica del Ebro.

ÍNDICE

			Pagina
1.	INTF	ODUCCIÓN	7
2.	DES	CRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE	7
	2.1.	Ámbito geológico y geográfico	7
	2.2.	Características morfométricas e hidrológicas	8
	2.3.	Usos del agua	9
	2.4.	Registro de zonas protegidas	9
3.	TRA	BAJOS REALIZADOS	10
4.	DIAC	SNÓSTICO DE LA SITUACIÓN ACTUAL	11
	4.1.	Características físico-químicas de las aguas	11
	4.2.	Hidroquímica del embalse	14
	4.3.	Fitoplancton y concentración de clorofila	15
	4.4.	Zooplancton	18
5.	DIAC	SNÓSTICO DEL GRADO TRÓFICO	20
6.	DIAC	SNOSTICO DEL POTENCIAL ECOLÓGICO	21
1A	NEXC	I. REPORTAJE FOTOGRÁFICO	

ÍNDICE DE FIGURAS Y TABLAS

ÍNDICE DE FIGURAS CORRESPONDIENTES A GRÁFICOS Y FOTOS

Figura 1. Volumen embalsado y salida durante el año hidrológico 2013-2014	9
Figura 2. Localización de la estación de muestreo en el embalse	10
Figura 3. Perfil vertical de la temperatura y pH	11
Figura 4. Perfil vertical de la extinción luminosa y oxígeno disuelto	12
Figura 5. Perfil vertical de la conductividad	13
Figura 6. Perfil vertical de la clorofila a	16
Figura 7. Fotografía de la presa del embalse	27
Figura 8. Fotografía del punto de acceso al embalse	27
ÍNDICE DE TABLAS	
Tabla 1. Características morfométricas del embalse de Vadiello	8
Tabla 2. Estructura y composición de la comunidad de fitoplancton.	15
Tabla 3. Composición detallada de la comunidad de fitoplancton	16
Tabla 4. Estructura y composición de la comunidad de zooplancton	18
Tabla 5. Composición detallada de la comunidad de zooplancton	19
Tabla 6. Parámetros indicadores y rangos de estado trófico.	20
Tabla 7. Diagnóstico del estado trófico del embalse de Vadiello.	20
Tabla 8. Parámetros y rangos para la determinación del potencial ecológico experimental.	21
Tabla 9. Combinación de los indicadores.	22
Tabla 10. Diagnóstico del potencial ecológico del embalse de Vadiello.	22
Tabla 11. Valores de referencia propios del tipo (VR _t) y límites de cambio de clase de potencial ecológico de los indicadores de los elementos de calidad de embalses (Orden ARM/2656/2008).	23
Tabla 12. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo.	24
Tabla 13. Combinación de los indicadores.	24
Tabla 14. Diagnóstico del potencial ecológico (PEnorm) del embalse de Vadiello	25

1. INTRODUCCIÓN

El presente documento recoge los resultados de los trabajos realizados en el embalse de Vadiello durante los muestreos de 2014 y la interpretación de los mismos, a efectos de proporcionar una referencia que facilite la consulta y explotación de la información obtenida.

En general, se recurre a presentaciones gráficas y sintéticas de la información, acompañadas de un texto conciso, lo que permitirá una consulta ágil y rápida del documento.

En el **Anexo I** se presenta un reportaje fotográfico que refleja el estado del embalse durante el periodo estudiado (verano 2014, correspondiente al año hidrológico 2013-2014).

En apartados sucesivos se comentan los siguientes aspectos:

- Resultados del estudio en el embalse (FASE DE CARACTERIZACIÓN) de todos los aspectos tratados (hidrológicos, fisicoquímicos y biológicos), que culminan en el diagnóstico del grado trófico.
- Clasificación del "Potencial Ecológico", tras la aplicación de los indicadores biológicos y fisicoquímicos propuestos en la Directiva Marco del Agua.

2. DESCRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE

2.1. Ámbito geológico y geográfico

El Embalse de Vadiello se sitúa dentro del término municipal de Loporzano, en la provincia de Huesca. Regula las aguas del río Guatizalema, afluente del Alcanadre, en la cuenca del río Cinca. La cubeta del embalse de Vadiello se enclava en las litologías que se resumen en la siguiente tabla:

TIPO LITOLOGÍA	ORIGEN
Calizas, calcarenitas, dolomías y margas	CARBONATADAS
Conglomerados, gravas, arenas, limos y arcillas. Costras a tec	ho DETRÍTICAS
Conglomerados, areniscas, lutitas y a veces margas y calizas	DETRÍTICAS
Sales potásicas	EVAPORÍTICAS

2.2. Características morfométricas e hidrológicas

La cuenca vertiente al embalse de Vadiello tiene una superficie total de 13450,71 ha.

El embalse tiene una capacidad total de 65,32 hm³. Tiene una profundidad media de 28,5 m, mientras que la profundidad máxima es de 59,80 m.

En la tabla **1** se presentan las características morfométricas del embalse.

Tabla 1. Características morfométricas del embalse de Vadiello.

Superficie de la cuenca	135 km²
Capacidad total N.M.N.	65,32 hm ³
Capacidad útil	65 hm³
Aportación media anual	120 hm ³
Superficie inundada	347 ha
Cota máximo embalse normal	467,69 m

Tipo de clasificación: 7. Monomíctico, calcáreo, de zona húmeda, perteneciente a ríos de cabecera y tramo alto, con temperatura media anual menor de 15 °C.

Se trata de un embalse monomíctico. En el periodo estival existe termoclina entre los 8 y 14 metros de profundidad. El límite inferior de la capa fótica en verano se encuentra alrededor de los 16 metros de profundidad determinado mediante medidor fotoeléctrico, aunque la estimación mediante el Disco de Secchi era de 15 m.

El tiempo de residencia hidráulica media en el embalse de La Peña para el año hidrológico 2013-2014 fue de 5,30 meses.

En la figura 1 se presentan los valores diarios del volumen embalsado y salida media correspondientes al año hidrológico 2013-2014.

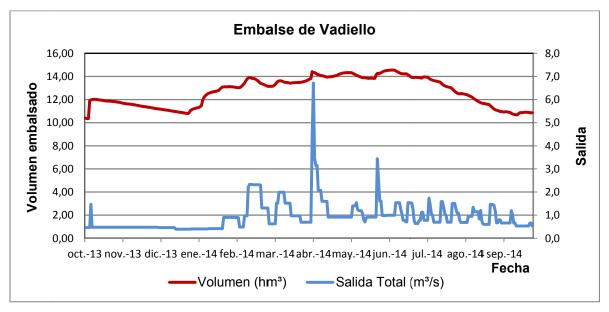


Figura 1. Volumen embalsado y salida durante el año hidrológico 2013-2014.

2.3. Usos del agua

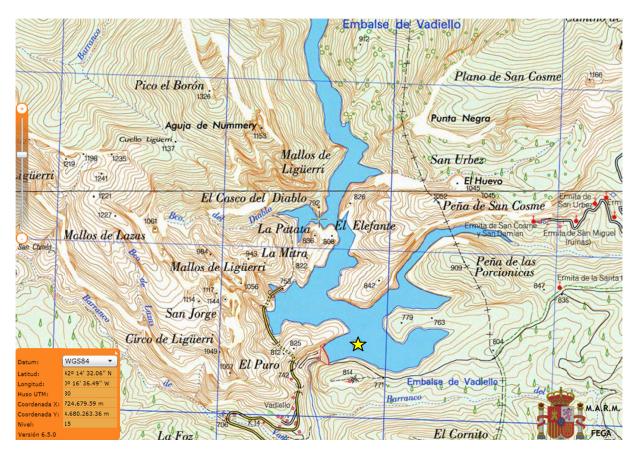
Las aguas del embalse se destinan principalmente a los regadíos y al aprovechamiento hidroeléctrico. Los usos recreativo y deportivo también son significativos, permitiéndose el baño, la navegación (a remo y a vela sin restricciones, no es apto para motor) y la pesca en este embalse.

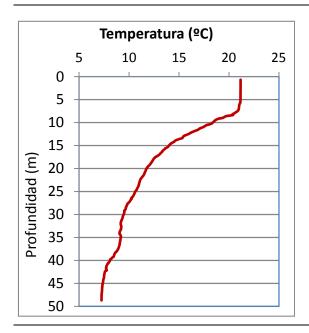
2.4. Registro de zonas protegidas

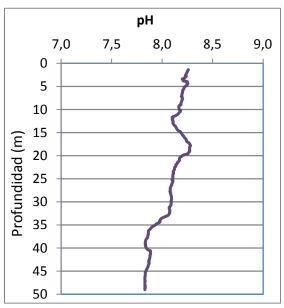
El embalse de Vadiello forma parte del Registro de Zonas Protegidas elaborado por la Confederación Hidrográfica del Ebro, en contestación al artículo 6 de la Directiva Marco del Agua, en las categorías de zonas de uso recreativo (zona de baño: Guesalaz) y zonas sensibles a nutrientes (zonas sensibles bajo el marco de la Directiva 91/271/CEE).

3. TRABAJOS REALIZADOS

Para acometer la caracterización del embalse se ha ubicado una estación de muestreo en las inmediaciones de la presa (ver figura 2). Se ha completado una campaña de muestreo el 29 de Julio de 2014, en la que se midieron *in situ* los parámetros físico-químicos y la transparencia en la columna de agua, se tomó una muestra de agua integrada y otras puntuales para los análisis químicos y se realizaron muestreos de fitoplancton y zooplancton.

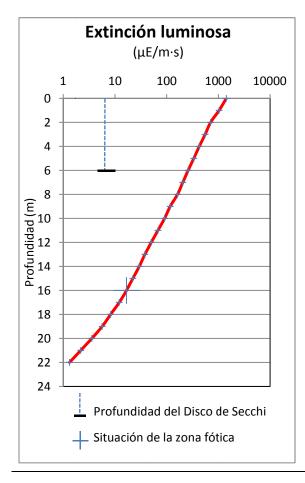



Figura 2. Localización de la estación de muestreo en el embalse.


4. DIAGNÓSTICO DE LA SITUACIÓN ACTUAL

4.1. Características físico-químicas de las aguas

De los resultados obtenidos en las variables fisicoquímicas se desprenden las siguientes apreciaciones:



La temperatura del agua oscila entre los 7,24 °C – en el fondo- y los 21,16 °C - máximo registrado en superficie-. En el momento del muestreo (Julio 2014) la termoclina se sitúa entre los 8 – 14 metros de profundidad.

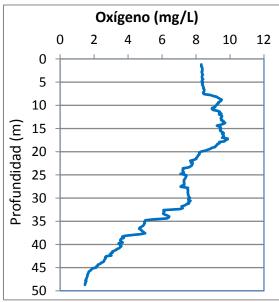
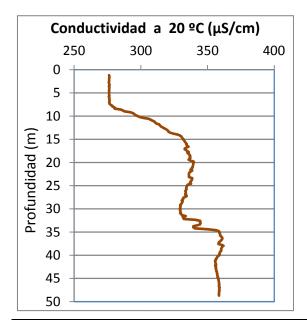

El pH del agua en la superficie es de 8,26, máximo epilimnético. En el fondo del embalse de Vadiello el pH es de 7,83, mínimo hipolimnético.

Figura 3. Perfil vertical de la temperatura y pH.

La transparencia del agua registrada en la lectura del disco de Secchi (DS) es de 2,70 m, lo que supone una profundidad de la capa fótica en torno a 6,8 metros. Valor muy similar al registrado con medidor fotoeléctrico de 7 m de profundidad.


La turbidez media de la zona eufótica (muestra integrada a 7 m de profundidad) fue de 1,94 UAF.

Las condiciones de oxigenación de la columna de agua en el epilimnion alcanzan una concentración media de 8,41 mg/L. En el hipolimnion las condiciones de oxigenación obtenidas son 5,96 mg/L. Se han detectado condiciones anóxicas (<2 mg/L O₂) a partir de los 45 metros de profundidad.

Figura 4. Perfil vertical de la extinción luminosa y oxígeno disuelto

La conductividad del agua registrada es de 276 μ S/cm en la superficie y de 358 μ S/cm en el fondo. La conductividad más alta se registra a los 38 m de profundidad, 362 μ S/cm.

Figura 5. Perfil vertical de la conductividad.

4.2. Hidroquímica del embalse

De los resultados analíticos obtenidos en la campaña de 2014 en la muestra integrada, se desprenden las siguientes apreciaciones:

- La concentración de fósforo total (PT) en la muestra integrada (zona fótica) fue de 3,44 µg P/L.
- La concentración de P soluble fue de 0,97 μg P/L.
- La concentración de nitrógeno total (NT) fue de 0,14 mg N/L.
- La concentración de nitrógeno inorgánico oxidado (nitrato + nitrito, NIO) tomó un valor <0,01 mg N/L.
- La concentración de amonio (NH₄) resultó ser <0,01 mg N/L.
- La concentración de sílice tomó un valor de 3,51 mg SiO₂/L
- La alcalinidad en este embalse (zona fótica) fue de 3,19 meq/L.

4.3. Fitoplancton y concentración de clorofila

En el análisis realizado se han identificado un total de 27 especies, distribuidas en los siguientes grupos taxonómicos:

BACILLARIOPHYCEAE	6
CHRYSOPHYCEAE	6
SYNUROPHYCEAE	1
CHLOROPHYCEAE	4
CYANOBACTERIA	1
CRYPTOPHYCEAE	6
DINOPHYCEAE	3

La estructura de la comunidad de fitoplancton se resume en la tabla 2 y la composición detallada en la tabla 3.

Tabla 2. Estructura y composición de la comunidad de fitoplancton.

PARÁMETRO	UNIDAD	VALOR		
Nº CÉLULAS TOTALES nº cel./ml		1983,50		
BIOVOLUMEN TOTAL µm³/ml		773589		
Diversidad Shann	on-Wiener	2,25		
CLASE PREDOMINANT	E (DENSIDAD)	Bacillariophyceae		
Nº células/	ml	1391,91		
ESPECIE PREDOMINAN	TE (DENSIDAD)	Cyclotella cyclopuncta		
Nº células/	ml	1086,74		
CLASE PREDOMINANTE	(BIOVOLUMEN)	Bacillariophyceae		
μm³/ml		547954		
ESPECIE PREDOMINANT	E (BIOVOLUMEN)	Cyclotella cyclopuncta		
μm³/ml		327754		

La concentración de clorofila fue de 1,34 µg/L en la muestra integrada (profundidad señalada en la figura 6 con una línea roja). Se observa en el perfil medido por fluorimetría que el valor máximo de concentración de clorofila se sitúa en los 19 m de profundidad.

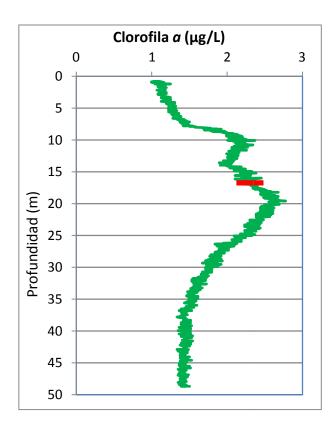


Figura 6. Perfil vertical de la clorofila a

La composición de la población fitoplanctónica de la muestra integrada de la zona fótica indicando su abundancia y biovolumen, y la densidad cualitativa de la muestra integrada de fitoplancton del muestreo vertical con red de plancton, muestran los resultados de la tabla 3:

Tabla 3. Composición detallada de la comunidad de fitoplancton.

	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EMB_LW	FITOPLANCTON	cél./ml	μm³/ml	
	BACILLARIOPHYCEAE/CENTRALES/			
AULAGRAN0	Aulacoseira granulata	2,83	3599	1
CYCLCYCL0	Cyclotella cyclopuncta	1086,74	327754	2
	BACILLARIOPHYCEAE /PENNALES/			
AMPHOVAL0	Amphora ovalis			1
ASTEFORM0	Asterionella formosa	294,75	212220	5
CYMBMINU0	Encyonema minutum (=Cymbella minuta)	0,94	490	1

	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EMB_LW	FITOPLANCTON	cél./ml	μm³/ml	
NAVICRYH0	Navicula cryptocephala	0,94	1068	1
NITZPALE0	Nitzschia palea	5,69	2823	1
	CHRYSOPHYCEAE			
BITRCHOD0	Bitrichia chodatii	0,94	124	
CHRYOGEN0	Chrysochromulina sp.	125,17	5007	
DINODIVE0	Dinobryon divergens	3,78	658	1
DINOSERT0	Dinobryon sertularia	0,94	135	1
OCHROGEN0	Ochromonas sp.	182,07	142999	
PSEKEGEN0	Pseudokephyrion sp.	11,38	1043	
	SYNUROPHYCEAE			<u> </u>
MALLOVIF0	Mallomonas oviformis	0,94	14 4 5	
	CHLOROPHYTA			<u> </u>
CARTEGEN0	Carteria sp.	0,94	1604	
COENHIND0	Coenochloris hindakii	11,38	745	
ELAKGELA0	Elakatothrix gelatinosa	5,69	83	
OOCYMARS0	Oocystis marssonii	3,78	855	
	CYANOBACTERIA			L
PLANRUBE0	Oscillatoria rubescens	153,61	16296	2
	CRYPTOPHYCEAE			
CRYPEROS0	Cryptomonas erosa	6,61	15807	1
CRYPMARS0	Cryptomonas marsonii	3,78	4155	1
CRYPOVAT0	Cryptomonas ovata	0,94	1839	
CRYPPHAS0	Cryptomonas phaseolus	4,72	979	
PLAGLACU0	Plagioselmis (=Rhodomonas) lacustris	39,83	5678	
PLAGNANN0	Plagioselmis nannoplanctica (=R. lacustris	28,45	1668	
PLAGNANNO	var. nannoplanctica)	20,45	1000	
	DINOPHYCEAE			I
CERAHIRU0	Ceratium hirundinella			1
GYMNLACU0	Gymnodinium lacustre	4,72	5342	
GYMNUBER0	Gymnodinium uberrimum			1
PERICINC0	Peridinium cinctum	0,94	16929	1
PERIUMBO0	Peridinium umbonatum	0,94	2244	1

Nota: Entre paréntesis se cita el anterior nombre de la especie.

Clases de abundancia	% de presencia
1	<9
2	10-24
3	25-60
4	61-99
5	>99

4.4. Zooplancton

En el análisis de zooplancton de las muestras del embalse de Vadiello se han identificado un total de 12 especies, distribuidas en los siguientes grupos taxonómicos:

- 3 Cladocera
- 3 Copepoda
- 5 Rotifera

La estructura y composición de la comunidad de zooplancton se resume en la tabla 4:

Tabla 4. Estructura y composición de la comunidad de zooplancton.

PARAMETRO	UNIDAD	VALOR			
PROFUNDIDAD	m	15,0			
DENSIDAD TOTAL	individuos/L	73,46			
BIOMASA TOTAL	μg/L		16,45		
Diversidad Sha	nnon-Wiener		2,28		
CLASE PREDOMINA	ANTE (DENSIDAD)		Rotíferos		
individ	uos/L	65,38			
TAXÓN PREDOMINANTE (DENSIDAD)			Ascomorpha ovalis		
individuos/L			41,73		
CLASE PREDOMIN	ANTE (BIOMASA)	Cladóceros			
hа	L	10,60			
ESPECIE PREDOMII	ESPECIE PREDOMINANTE (BIOMASA)		Bosmina longirostris		
ha	L	6,25			
COLUMNA AGUA INTEGRADA (red vertical)		0 - 30 m			
CLADÓCEROS: 8,64 % COPÉPODOS: 2		,36 % ROTÍFEROS : 89,01 %			

La composición detallada de la población zooplanctónica presente en la muestra cuantitativa de zooplancton indicando la densidad y biomasa, y el porcentaje de las especies presentes en la muestra integrada de la red vertical, se muestran en la tabla 5:

Tabla 5. Composición detallada de la comunidad de zooplancton.

CÓDIGO	COMPOSICIÓN	ABUNDANCIA	BIOMASA	PORCENTAJE
TAXÓN	ZOOPLANCTON	Ind./L	mg/L	%
	CLADÓCEROS			
BOSMLONG0	Bosmina longirostris	4,81	6,25	6,54
CERIPULC0	Ceriodaphnia pulchella	0,58	0,69	0,79
DAPHLONG0	Daphnia longispina	0,96	3,65	1,31
	COPÉPODOS			
CYCLOGEN0	Cyclops sp.	0,19	0,15	0,26
MACRALBI0	Macrocyclops albidus	0,19	1,15	0,26
CYCLOPFAM	Ciclópido	1,35	0,55	1,83
	ROTÍFEROS			
ASCOOVAL0	Ascomorpha ovalis	41,73	2,61	56,81
COLLOGEN0	Collotheca sp.	5,96	0,18	8,12
KERACOCH0	Keratella cochlearis	15,38	0,77	20,94
PLOELENT0	Ploesoma hudsoni	0,38	0,35	0,52
POLYDOLI0	Polyarthra dolichoptera	1,92	0,10	2,62
	Total Cladóceros	6,35	10,60	8,64
	Total Copépodos	1,73	1,86	2,36
	Total Rotiferos	65,38	4,00	89,01
	Total	73,46	16,45	100,00

5. DIAGNÓSTICO DEL GRADO TRÓFICO

Se han considerando los indicadores especificados en la tabla 6 para los valores medios en el embalse, estableciéndose el estado trófico global del embalse según la metodología descrita en la sección 5 de la MEMORIA DEL ESTUDIO.

Tabla 6. Parámetros indicadores y rangos de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración P (μg P/L)	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L) epilimnion	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cel./ml)	<100	100-1000	1000-10000	10000-100000	>100000
VALOR PROMEDIO FINAL	> 4,2	3,4 - 4,2	2,6 - 3,4	1,8 - 2,6	< 1,8

En la tabla 7 se incluye el estado trófico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según la valoración de este estado trófico final.

Tabla 7. Diagnóstico del estado trófico del embalse de Vadiello.

INDICADOR	VALOR	ESTADO TRÓFICO
P TOTAL	3,44	Ultraoligotrófico
CLOROFILA a	1,34	Oligotrófico
DISCO SECCHI	6,00	Oligotrófico
DENSIDAD ALGAL	1983	Mesotrófico
ESTADO TROFICO FINAL	4,0	OLIGOTRÓFICO

Atendiendo a los criterios seleccionados, el fósforo total (PT) determina para el embalse un estado ultraoligotrófico. Mientras que la transparencia (DS) y la concentración de clorofila *a*, clasifican el embalse como oligotrófico. Y la densidad algal cataloga el embalse como mesotrófico. Combinando todos los indicadores el estado trófico final para el embalse de Vadiello ha resultado ser **OLIGOTRÓFICO**.

6. DIAGNOSTICO DEL POTENCIAL ECOLÓGICO

a) Aproximación experimental (PEexp)

Se han considerando los indicadores especificados en la tabla 8, estableciéndose el potencial ecológico del embalse según la metodología descrita en la sección 6.3, apartado a) de la MEMORIA DEL ESTUDIO.

Tabla 8. Parámetros y rangos para la determinación del potencial ecológico experimental.

Indicador Elementos		Parámetros	Máximo	Bueno	Moderado	Deficiente	Malo		
		Densidad algal (cel/ml)	<100	100-10 ³	10 ³ -10 ⁴	10⁴-10⁵	>10 ⁵		
		Biomasa algal, Clorofila a	0-1	1-2,5	2,5-8	8,0-25	>25		
		(μg/L)							
		Biovolumen algal (mm³/L)	<0,1	0,1-0,5	0,5-2	2-8	>8		
	Fitoplancton	Phytoplankton Assemblage Index (Q)	>4	3-4	2-3	1-2	<1		
Biológico		Trophic Index (TI)	<2,06	2,06-2,79	2,79-3,52	3,52-4,25	>4,25		
		Phytoplankton Trophic Index (PTI)	>4,2	3,4-4,2	2,6-3,4	1,8-2,6	<1,8		
		Phytoplankton Reservoir Trophic Index (PRTI)	<3,8	3,8-6,6	6,6-9,4	9,4-12,2	>12,2		
	Zooplancton	Zooplankton Reservoir Trophic Index (ZRTI)	<3,8	3,8-6,6	6,6-9,4	9,4-12,2	>12,2		
	INDICADOR BI	IOLÓGICO (1)	> 4, 2	3, 4 -4, 2	2,6-3,4	1, 8 -2, 6	< 1, 8		
	Transparencia	Profundidad Disco de Secchi (m)	>6	3-6	1, 5 -3	0, 7 -1,5	<0, 7		
Fisicoquímico	Oxigenación	Concentración O ₂ (mg O ₂ /L)	>8	8-6	6-4	4-2	<2		
	Nutrientes Concentración de PT (µg P/L)		0-4	4-10	10-35	35-100	>100		
	INDICADOR FISICOQUÍMICO (2)			AS FUN	NO AS FUN				
·	INDICADON I ISICO QUIMICO (2)					<3,4			

- (1) La valoración del indicador biológico se obtiene asignando la calificación del elemento de menor puntuación (fitoplancton o zooplancton) o peor calidad, según la metodología one out, all out.
- (2) La valoración del indicador fisicoquímico se obtiene realizando la media de las puntaciones obtenidas para los distintos elementos. Si la media de los 3 elementos es igual o superior a 4,2 se considera que se cumplen las condiciones fisicoquímicas propias del máximo potencial ecológico (MPE). Si se alcanzan o superan los 3,4 puntos, se considera que las condiciones fisicoquímicas aseguran el funcionamiento del ecosistema (AS.FUN). Si no se alcanzan los 3,4 puntos, el indicador fisicoquímico no asegura el funcionamiento del ecosistema (NO AS.FUN).

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico experimental final sigue el esquema de decisiones indicado en la tabla 9:

Tabla 9. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico Experimental
Máximo	MPE	Máximo
Máximo	As Fun	Bueno
Máximo	No As Fun	Moderado
Bueno	MPE	Bueno
Bueno	As Fun	Bueno
Bueno	No As Fun	Moderado
Moderado	Indistinto	Moderado
Deficiente	Indistinto	Deficiente
Malo	Indistinto	Malo

En la tabla 10 se incluye el potencial indicado por cada uno de los parámetros e indicadores, así como la catalogación de la masa de agua según el potencial ecológico final.

Tabla 10. Diagnóstico del potencial ecológico del embalse de Vadiello.

Indicador	Elementos	Parámetros	Valor	Potencial
		Densidad algal (cel/ml)	1983	Moderado
		Clorofila a (μg/L)	1,34	Bueno
		Biovolumen algal (mm³/L)	0,77	Moderado
	Fitoplancton	Phytoplankton Assemblage Index (Q)	4,55	Máximo
Biológico		Phytoplankton Trophic Index (PTI)	3,98	Bueno
		Trophic Index (TI)	2,39	Bueno
		Phytoplankton Reservoir Trophic Index (PRTI)	7,97	Moderado
	Zooplancton	Zooplankton Reservoir Trophic Index (ZRTI)	5,20	Bueno
	INDICADOR BIOLÓGICO			
	Transparencia	Disco de Secchi(m)	6,00	Bueno
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	5,96	Moderado
	Nutrientes	Concentración de PT (μg P/L)	3,44	Máximo
	INDICADOR FISICOQUÍMICO			
	POTENCIAL ECOLÓGICO			

b) Aproximación normativa (*PEnorm*)

Se han considerado los indicadores, los valores de referencia y los límites de clase B⁺/M (Bueno o superior/Moderado), M/D (Moderado/Deficiente) y D/M (Deficiente/Malo), así como sus ratios de calidad ecológica (RCE), especificados en las tablas 11 y 12, estableciéndose el potencial ecológico del embalse según la metodología descrita en la sección 6.3, apartado b) de la MEMORIA DEL ESTUDIO.

Tabla 11. Valores de referencia propios del tipo (VR_t) y límites de cambio de clase de potencial ecológico de los indicadores de los elementos de calidad de embalses (Orden ARM/2656/2008).

Tine Flowerts		Dawéwa atua	lu di a a da u	\/D	B⁺/M	M/D	D/M
Tipo	Elemento	Parametro	Indicador	VR _t	(RCE)	(RCE)	(RCE)
	4 F" 1 ·	Diamaga	Clorofila a mg/m ³	2,00	0,211	0,14	0,07
T: 4		Biomasa	Biovolumen mm³/L	0,36	0,189	0,126	0,063
Tipo 1	Fitoplancton	0	Índice de Catalán (IGA)	0,10	0,974	0,649	0,325
		Composición	Porcentaje de cianobacterias	0,00	0,908	0,607	0,303
		D:	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Ti 7	Fite also stone	Biomasa	Biovolumen mm³/L	0,76	0,362	0,24	0,12
Tipo 7	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		D:	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
T: 0	-	Biomasa	Biovolumen mm³/L	0,76	0,362	0,24	0,12
Tipo 9	Fitoplancton	Composición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
			Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
			Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Ti 40	Fit and an atom		Biovolumen mm³/L	0,76	0,362	0,24	0,12
Tipo 10	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
	Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24	
		D:	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
T: 44	- '' ' '	Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 11	Fitoplancton	Composición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composition	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		D:	Clorofila a mg/m ³	2,40	0,195	0,13	0,065
T: 10	- '' ' '	Biomasa	Biovolumen mm³/L	0,63	0,175	0,117	0,058
Tipo 12 Fitoplancton	Composición	Índice de Catalán (IGA)	1,50	0,929	0,619	0,31	
		Porcentaje de cianobacterias	0,10	0,686	0,457	0,229	
		Biomasa	Clorofila a mg/m ³	2,10	0,304	0,203	0,101
Time 40	F:4		Biovolumen mm ³ /L	0,43	0,261	0,174	0,087
Tipo 13	Fitoplancton	Common a state	Índice de Catalán (IGA)	1,10	0,979	0,653	0,326
		Composición	Porcentaje de cianobacterias	0,00	0,931	0,621	0,31

Tabla 12. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo.

			RANGOS DEL RCE						
Indicador	Elementos	Parámetros	Máximo	Bueno	Moderado	Deficiente	Malo		
		Clorofila a (µg/L)	≥ 1	0,99 - 0,433	0,432 - 0,287	0,286 - 0,143	< 0,143		
B: 1/ :		Biovolumen algal (mm³/L)	≥ 1	0,99 - 0,362	0,361 – 0,24	0,23 – 0,12	< 0,12		
Biológico	Fitoplancton	Índice de Catalán (IGA)	≥ 1	0,99 - 0,982	0,981 – 0,655	0,654 – 0,327	< 0,327		
		Porcentaje de cianobacterias	≥ 1	0,99 – 0,715	0,714 - 0,48	0,47 - 0,24	< 0,24		
			Máximo	Bueno	Moderado	Deficiente	Malo		
IN	INDICADOR BIOLÓGICO			0,6-0,8	0,4-0,6	0,2-0,4	< 0,2		
			•						
				R.A	NGOS DE VALO	RES			
Indicador	Elementos	Parámetros	Máximo	Bueno	Moderado	Deficiente	Malo		
	Transparencia	Disco de Secchi (m)	>6	3-6	1, 5 -3	0, 7 -1,5	<0, 7		
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	>8	8-6	6-4	4-2	<2		
	Nutrientes	Concentración de PT (µg P/L)	0-4	4-10	10-35	35-100	>100		
				AS FUN		NIO AS FUN			
INDI	INDICADOR FISICOQUÍMICO			3,4-4,2		<3,4			

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico normativo final sigue el esquema de decisiones indicado en la tabla 13:

Tabla 13. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico Normativo
Máximo	MPE	Máximo
Máximo	As Fun	Bueno
Máximo	No As Fun	Moderado
Bueno	MPE	Bueno
Bueno	As Fun	Bueno
Bueno	No As Fun	Moderado
Moderado	Indistinto	Moderado
Deficiente	Indistinto	Deficiente
Malo	Indistinto	Malo

En la tabla **14** se incluye el potencial indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según el potencial ecológico final (*PEnorm*) tras pasar el filtro del indicador fisicoquímico.

Tabla 14. Diagnóstico del potencial ecológico (*PEnorm*) del embalse de Vadiello.

Indicador	Elementos	Parámetro	Indicador	Valor	RCE	RCET	PEnorm	
		Biomasa	Clorofila a (µg/L)	1,34	1,94	1,66	Máximo	
			Biovolumen algal (mm ³ /L)	0,77	0,98	0,99	Bueno	
			Media			1,32		
Biológico	Fitoplancton		Índice de Catalán (IGA)	0,74	1,000	0,99	Bueno	
		Composición	Porcentaje de cianobacterias	2,11	0,98	0,97	Bueno	
			Media			0,98		
Media global						1,15		
	INDICADOR BIOLÓGICO				1,15	MÁXIMO		
Indic	ador	Elementos	Indicador	,	/alor		PEnorm	
	Т	ransparencia	Disco de Secchi (m)		6,00		Bueno	
Fisicoquímic	0 0	xigenación	O ₂ hipolimnética (mg O ₂ /L)	5,96			Moderado	
	N	utrientes	Concentración de PT (µg P/L)	3,44			Máximo	
INDICADOR FISICOQUÍMICO					4,0		AS FUN	
	POTENCIAL ECOLÓGICO PEnorm					BUENO		

ANEXO I. REPORTAJE FOTOGRÁFICO

Figura 7. Vista de la presa del embalse.

Figura 8. Vista del punto de acceso.