

RED DE SEGUIMIENTO DE MASAS DE AGUA MUY MODIFICADAS DEMARCACIÓN HIDROGRÁFICA DEL EBRO

INFORME FINAL DEL EMBALSE DE IRABIA

ÁREA DE CALIDAD DE AGUAS CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

RED DE SEGUIMIENTO DE MASAS DE AGUA MUY MODIFICADAS

DEMARCACIÓN HIDROGRÁFICA DEL EBRO

PROMOTOR:

CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

SERVICIO:

CONTROL DEL ESTADO ECOLÓGICO

DIRECCIÓN DEL PROYECTO:

Concha Durán Lalaguna y María José Rodríguez Pérez

EMPRESA CONSULTORA:

Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universidad de Valencia Estudi General

EQUIPO DE TRABAJO:

Área de Limnología, dirigida por Dr. Eduardo Vicente Pedrós, Catedrático de Ecología. Director del Estudio.

PRESUPUESTO DE LA ADJUDICACIÓN:

70.590,38 €

CONTENIDO:

INFORME INDIVIDUAL DEL EMBALSE DE IRABIA

AÑO DE EJECUCIÓN:

2015

FECHA ENTREGA:

DICIEMBRE 2015

REFERENCIA IMÁGENES PORTADA:

Vista de la presa del embalse de Irabia desde el punto de toma de muestras.

CITA DEL DOCUMENTO: Confederación Hidrográfica del Ebro (2015). Red de seguimiento de masas de agua muy modificadas en la Demarcación Hidrográfica del Ebro. 208 págs. más anejos. Disponible en PDF en la web: http://www.chebro.es

El presente informe pertenece al Dominio Público en cuanto a los Derechos Patrimoniales recogidos por el Convenio de Berna. Sin embargo, se reconocen los Derechos de los Autores y de la Confederación Hidrográfica del Ebro a preservar la integridad del mismo, las alteraciones o la realización de derivados sin la preceptiva autorización administrativa con fines comerciales, o la cita de la fuente original en cuanto a la infracción por plagio o colusión. A los efectos prevenidos, las autorizaciones para uso no científico del contenido deberán solicitarse a la Confederación Hidrográfica del Ebro.

ÍNDICE

		Página
1.	INTR	ODUCCIÓN7
2.	DES	CRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE7
	2.1.	Ámbito geológico y geográfico7
	2.2.	Características morfométricas e hidrológicas
	2.3.	Usos del agua
	2.4.	Registro de zonas protegidas
3.	TRAI	BAJOS REALIZADOS9
4.	DIAG	NÓSTICO DE LA SITUACIÓN ACTUAL10
	4.1.	Características fisicoquímicas de las aguas
	4.2.	Hidroquímica del embalse
	4.3.	Fitoplancton y concentración de clorofila
	4.4.	Zooplancton
5.	DIAG	NÓSTICO DEL GRADO TRÓFICO19
6.	DIAG	NÓSTICO DEL POTENCIAL ECOLÓGICO20
A۱	NEXO	. REPORTAJE FOTOGRÁFICO

ÍNDICE DE FIGURAS Y TABLAS

ÍNDICE DE FIGURAS CORRESPONDIENTES A GRÁFICOS Y FOTOS

Figura 1. Localización de la estación de muestreo en el embalse	9
Figura 2. Perfil vertical de la temperatura y pH	10
Figura 3. Perfil vertical de la extinción luminosa y oxígeno disuelto	11
Figura 4. Perfil vertical de la conductividad	12
Figura 5. Perfil vertical de la clorofila a	15
Figura 6. Fotografía de la cola del embalse	26
Figura 7. Fotografía del punto de acceso al embalse	26
ÍNDICE DE TABLAS	
Tabla 1. Características morfométricas del embalse de Irabia	8
Tabla 2. Estructura y composición de la comunidad de fitoplancton	14
Tabla 3. Composición detallada de la comunidad de fitoplancton	15
Tabla 4. Estructura y composición de la comunidad de zooplancton	17
Tabla 5. Composición detallada de la comunidad de zooplancton	18
Tabla 6. Parámetros indicadores y rangos de estado trófico.	19
Tabla 7. Diagnóstico del estado trófico del embalse de Irabia.	19
Tabla 8. Parámetros y rangos para la determinación del potencial ecológico experimental.	20
Tabla 9. Combinación de los indicadores.	21
Tabla 10. Diagnóstico del potencial ecológico del embalse de Irabia.	21
Tabla 11. Valores de referencia propios del tipo (VR _t) y límites de cambio de clase de potencial ecológico de los indicadores de los elementos de calidad de embalses (RD 817/2015).	22
Tabla 12. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo.	23
Tabla 13. Combinación de los indicadores.	23
Tabla 14. Diagnóstico del potencial ecológico (PEnorm) del embalse de Irabia	24

1. INTRODUCCIÓN

El presente documento recoge los resultados de los trabajos realizados en el embalse de Irabia durante los muestreos de 2015 y la interpretación de los mismos, a efectos de proporcionar una referencia que facilite la consulta y explotación de la información obtenida.

En general, se recurre a presentaciones gráficas y sintéticas de la información, acompañadas de un texto conciso, lo que permitirá una consulta ágil y rápida del documento.

En el **Anexo I** se presenta un reportaje fotográfico que refleja el estado del embalse durante el periodo estudiado (verano 2015, correspondiente al año hidrológico 2014-2015).

En apartados sucesivos se comentan los siguientes aspectos:

- Resultados del estudio en el embalse (FASE DE CARACTERIZACIÓN) de todos los aspectos tratados (hidrológicos, fisicoquímicos y biológicos), que culminan en el diagnóstico del grado trófico.
- Clasificación del "Potencial Ecológico", tras la aplicación de los indicadores biológicos y fisicoquímicos propuestos en la Directiva Marco del Agua.

2. DESCRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE

2.1. Ámbito geológico y geográfico

La cuenca vertiente del embalse de Irabia se encuentra situada en la Selva de Irati, en el Pirineo Navarro, dentro del término municipal de Orbaitzeta, en la provincia de Navarra. Regula las aguas del río Irati

En términos geológicos, el embalse de Irabia se encuentra sobre materiales del Paleógeno, series Eoceno-Paleoceno: materiales dolomías y calizas con niveles margosos, areniscas y lutitas en facies turbidíticas.

2.2. Características morfométricas e hidrológicas

Se trata de un embalse de pequeñas dimensiones, de geometría ondulada y regular.

La cuenca vertiente al embalse de Irabia tiene una superficie total de 8320 ha.

El embalse tiene una capacidad total de 13,81 hm³. Caracterizado por una profundidad media de 17,50 m, mientras que la profundidad máxima alcanza los 69 m.

En la tabla 1 se presentan las características morfométricas del embalse.

Tabla 1. Características morfométricas del embalse de Irabia

Superficie de la cuenca	116 ha	
Capacidad total N.M.N.	13,81 hm³	
Capacidad útil	13,59 hm ³	
Superficie inundada	114 ha	
Cota máximo embalse normal	813,18 msnm	

Tipo de clasificación: 7. Monomíctico, calcáreo, de zona húmeda, perteneciente a ríos de cabecera y tramo alto, con temperatura media anual menor de 15 °C.

Se trata de un embalse monomíctico de zonas frías y geología calcárea. Había estratificación en el momento del muestreo. El límite inferior de la capa fótica se encuentra a 10,5 metros de profundidad determinado mediante medidor fotoeléctrico, aunque la estimación mediante el Disco de Secchi era de 11,3 m.

El tiempo de residencia hidráulica media en el embalse del Ebro para el año hidrológico 2014-2015 no pudo ser calculado debido a la ausencia de datos de salidas de caudal en los registros de la CHE.

2.3. Usos del agua

Las aguas del embalse se destinan principalmente al aprovechamiento hidroeléctrico.

2.4. Registro de zonas protegidas

El embalse de Irabia forma parte del Registro de Zonas Protegidas elaborado por la Confederación Hidrográfica del Ebro, en contestación al artículo 6 de la Directiva Marco del Agua, en la categoría de zonas de protección de hábitats o especies (Punto Red Natura 2000: LIC y ZEPA "Selva de Irati-Roncesvalles" ES0000126).

3. TRABAJOS REALIZADOS

Para acometer la caracterización del embalse se ha ubicado una estación de muestreo en las inmediaciones de la presa (ver figura 2). Se ha completado una campaña de muestreo el 23 de Junio de 2015, en la que se midieron *in situ* los parámetros fisicoquímicos y la transparencia en la columna de agua, se tomó una muestra de agua integrada y otras puntuales para los análisis químicos y se realizaron muestreos de fitoplancton y zooplancton.

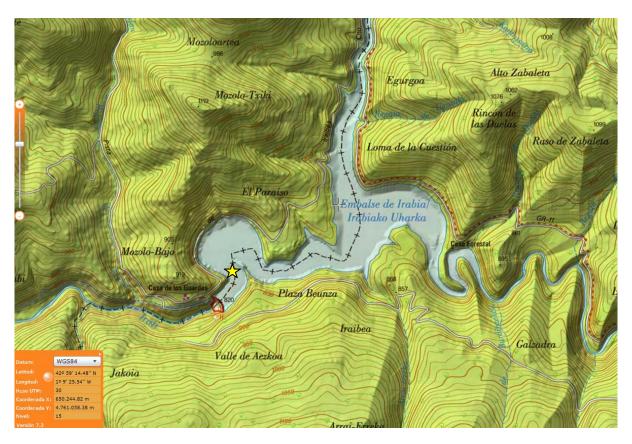
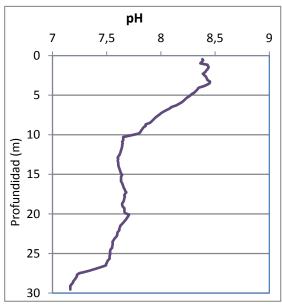
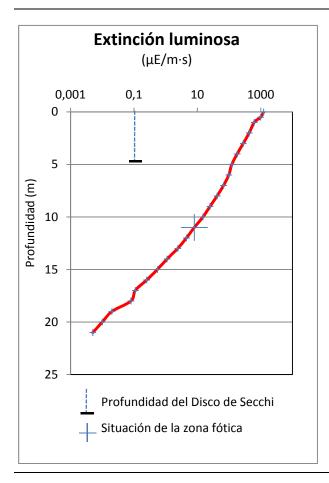


Figura 1. Localización de la estación de muestreo en el embalse.

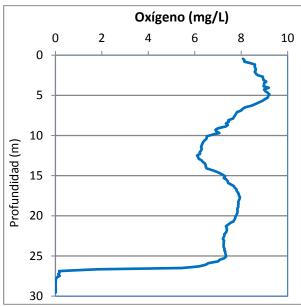

DIAGNÓSTICO DE LA SITUACIÓN ACTUAL

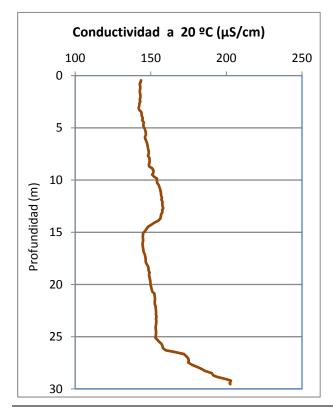
3.1. Características fisicoquímicas de las aguas

De los resultados obtenidos se desprenden las siguientes apreciaciones:


La temperatura del agua oscila entre los 8,31 °C en el fondo y los 20,94 °C -máximo registrado en superficie-. En el momento del muestreo (23 Junio 2015) existe termoclina.

El pH del agua en superficie es de 8,38 y, en el fondo de 7,16. Presenta un valor máximo a 3,3 m de profundidad con un valor de 8,45.


Figura 2. Perfiles verticales de la temperatura y el pH.


La transparencia del agua registrada en la lectura del disco de Secchi (DS) es de 4,50 m, lo que supone una profundidad de la capa fótica en torno a 11,3 metros. Sin embargo, la capa fótica determinada con medidor fotoeléctrico es de 10,5 m, por lo que a efectos de muestreo se considera ese espesor de columna de agua.

La turbidez media de la zona eufótica (muestra integrada de 10,5 m de profundidad) fue de 2,31 UAF.

Las condiciones de oxigenación de la columna de agua en la zona epilimnética teórica (unos 6 m) alcanzan en el muestreo una concentración media de 8,76 mg/L. Se han detectado condiciones anóxicas (<2 mg O_2/L) a partir de los 16,5 metros de profundidad.

Figura 3. Perfiles verticales de la extinción luminosa y el oxígeno disuelto.

La conductividad del agua es de 143 μ S/cm en la superficie y de 200 μ S/cm en el fondo. Se observa un aumento paulatino desde la superficie que se hace más acusado hacia el fondo, con un pequeño descenso entre los 13 y 15 metros de profundidad.

Figura 4. Perfil vertical de la conductividad.

3.2. Hidroquímica del embalse

De los resultados analíticos obtenidos en la campaña de 2015 en la muestra integrada a 12 m de profundidad, se desprenden las siguientes apreciaciones:

- La concentración de fósforo total (PT) en la muestra integrada (zona fótica) fue de 3,98 µg P/L.
- La concentración de P soluble fue de 0,65 μg P/L.
- La concentración de nitrógeno total (NT) fue de 0,20 mg N/L.
- La concentración de nitrógeno inorgánico oxidado (nitrato + nitrito, NIO) tomó un valor de 0,14 mg N/L.
- La concentración de amonio (NH₄) fue de 0,051 mg N/L.
- La concentración de sílice tomó un valor de 1,71 mg SiO₂/L
- La alcalinidad en este embalse (zona fótica) fue de 1,76 meq/L.

3.3. Fitoplancton y concentración de clorofila

En el análisis de fitoplancton se han identificado un total de 14 especies, distribuidas en los siguientes grupos taxonómicos:

BACILLARIOPHYCEAE	2
CHRYSOPHYCEAE	4
CHLOROPHYTA	2
ZYGNEMATOPHYCEAE	1
CRYPTOPHYCEAE	4
DINOPHYCEAE	1
EUGLENOPHYCEAE	2

La estructura de la comunidad de fitoplancton se resume en la tabla 2 y la composición detallada en la tabla 3.

Tabla 2. Estructura y composición de la comunidad de fitoplancton.

PARÁMETRO	UNIDAD	VALOR	
Nº CÉLULAS TOTALES nº cél./ml		1609	
BIOVOLUMEN TOTAL	μm³/ml	939356	
Diversidad Shannoi	n-Wiener	2,08	
CLASE PREDOMINANTE	(DENSIDAD)	Bacillariophyceae	
Nº células/m	nl	942	
ESPECIE PREDOMINANT	E (DENSIDAD)	Cyclotella radiosa (Lindavia radiosa)	
Nº células/m	nl	915	
CLASE PREDOMINANTE (BIOVOLUMEN)	Bacillariophyceae	
μm³/ml		781816	
ESPECIE PREDOMINANTE	(BIOVOLUMEN)	Cyclotella radiosa (Lindavia radiosa)	
μm³/ml		773503	

La concentración de clorofila fue de 3,12 μ g/L para la muestra integrada, cuya profundidad se ha señalado en la figura 5 con una línea roja. En el perfil vertical se observa mediante el sensor de fluorimetría un máximo a 7 m de profundidad, al final del epilimnion, con una concentración de 5,3 μ g/L.

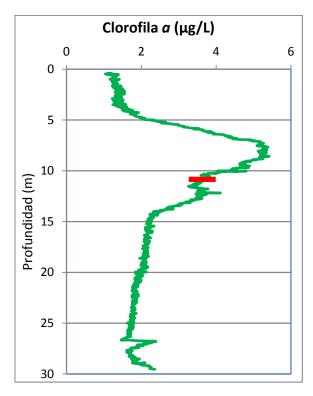


Figura 5. Perfil vertical de la clorofila a.

La composición de la población fitoplanctónica de la muestra integrada de la zona fótica indicando su abundancia y biovolumen, y la densidad cualitativa de la muestra integrada de fitoplancton del muestreo vertical con red de plancton, muestran los resultados de la tabla 3:

Tabla 3. Composición detallada de la comunidad de fitoplancton.

COD EMB LW	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EIVIB_EVV	FITOPLANCTON	cél./ml	μm3/ml	(1 al 5)
	BACILLARIOPHYCEAE/CENTRALES/			
CYCLRADI0	Cyclotella radiosa (=Lindavia radiosa)	915	773.503	4
	BACILLARIOPHYCEAE /PENNALES/			
ASTEFORM0	Asterionella formosa			1
FRAGIGEN0	Fragilaria sp.	27	8.313	2
NAVICRYH0	Navicula cryptocephala			1
NITZACIC0	Nitzschia acicularis			1
NITZRECT0	Nitzschia recta			1
FRAGULNA0 Ulnaria ulna (=Fragilaria ulna)				1
	CHRYSOPHYCEAE		·	
BITRCHOD0	Bitrichia chodatii			1

COD EMB LW	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EMB_LW	FITOPLANCTON	cél./ml	µm3/ml	(1 al 5)
CHRYOGEN0 Chrysochromulina sp.		235	7.515	
CHRYPLAN0	Chrysolykos planctonicus	51	4.699	1
DINODIVE0	Dinobryon divergens	16	2.822	2
OCHROGEN0	Ochromonas sp.	8	1.454	
STICDOED0	Stichogloea doederleinii			1
	CHLOROPHYTA			
KIRCCORN0	Kirchneriella cornuta	246	5.787	1
MONOARCU0	Monoraphidium arcuatum			1
PEDIBORY0	Pediastrum boryanum			1
SPHAPLAN0	Sphaerocystis planctonica	43	7.756	2
	ZYGNEMATOPHYCEAE			
COSMBIOC0	Cosmarium bioculatum	1	181	
	CRYPTOPHYCEAE			
CRYPEROS0	Cryptomonas erosa	22	51.614	1
CRYPMARS0	Cryptomonas marsonii	16	9.226	
CRYPOVATO Cryptomonas ovata		8	11.286	
CRYPTGEN0 Cryptomonas sp.				1
PLAGLACU0	Plagioselmis (=Rhodomonas) lacustris	5	729	
DINOPHYCEAE				
PERIACIC0	Peridinium aciculiferum	8	44.518	
	Peridinium umbonatum (=Parvodinium			
PERIUMBO0	umbonatum)			2
	EUGLENOPHYCEAE			T
EUGLACUS0	Euglena acus			1
EUGLAGIL0	Euglena agilis	1	5.971	1
EUGLEGEN0	Euglena sp.	5	3.980	
	TOTALES BACILLARIOPHYCEAE	942	781.816	
	TOTALES CHRYSOPHYCEAE	310	16.490	
	TOTALES CHLOROPHYTA	289	13.544	
	TOTALES ZYGNEMATOPHYCEAE	1	181	
	TOTALES CRYPTOPHYCEAE	51	72.856	
	TOTALES DINOPHYCEAE	8	44.518	
	TOTALES EUGLENOPHYCEAE	7	9.951	
	TOTALES ALGAS	1.609	939.356	

Nota: Entre paréntesis se cita el anterior nombre de la especie.

Clases de abundancia	% de presencia
1	<9
2	10-24
3	25-60
4	61-99
5	>99

Zooplancton

En el análisis de zooplancton de las muestras del embalse de Irabia se han identificado un total de 15 especies, distribuidas en los siguientes grupos taxonómicos:

- 3 Cladocera
- 2 Copepoda
- 10 Rotifera

La estructura y composición de la comunidad de zooplancton se resume en la tabla 4:

Tabla 4. Estructura y composición de la comunidad de zooplancton.

PARÁMETRO	UNIDAD	VALOR		
PROFUNDIDAD	PROFUNDIDAD m		17,0	
DENSIDAD TOTAL individuos/L		373,46		
BIOMASA TOTAL	μg/L		62,13	
Diversidad Sha	nnon-Wiener		2,14	
CLASE PREDOMINA	ANTE (DENSIDAD)		Rotíferos	
individ	uos/L	300,77		
ESPECIE PREDOMIN	ANTE (DENSIDAD)	Pol	Polyarthra dolichoptera	
individ	uos/L		193,85	
CLASE PREDOMINA	ANTE (BIOMASA)	Cladóceros		
μg/	L	25,21		
ESPECIE PREDOMIN	NANTE (BIOMASA)	Daphnia longispina		
μg/	L	17,54		
COLUMNA AGUA INTEGRADA (red vertical)			0 - 29 m	
CLADÓCEROS: 3,71 % COPÉPODOS		: 13,02 % ROTÍFEROS : 83,28 %		

La composición detallada de la población zooplanctónica presente en la muestra cuantitativa de zooplancton indicando la densidad y biomasa, y el porcentaje de las especies presentes en la muestra integrada de la red vertical, se muestran en la tabla 5:

Tabla 5. Composición detallada de la comunidad de zooplancton.

CÓDIGO	COMPOSICIÓN	ABUNDANCIA	BIOMASA	PORCENTAJE
TAXÓN	ZOOPLANCTON	Ind./L	mg/L	%
	CLADÓCEROS			
BOSMLONG0	Bosmina longirostris			0,01
CERIDUBI0	Ceriodapnia dubia			0,01
CERIPULC0	Ceriodaphnia pulchella	6,15	7,38	3,12
CHYDSPHA0	Chydorus sphaericus	0,19	0,29	0,05
DAPHLONG0	Daphnia longispina	4,62	17,54	0,52
	COPÉPODOS			
CYCLVICI0	Cyclops vicinus			0,52
EUCYSERR0	Eucyclops serrulatus	0,19	0,99	0,01
CYCLOPFAM	Ciclópido	61,54	12,69	12,49
	ROTÍFEROS			
ASCOECAU0	Ascomorpha ecaudis	29,23	1,83	1,04
ASPLPRIO0	Asplanchna priodonta	3,08	2,31	2,08
GASTSTYL0	Gastropus stylifer	1,54	0,31	0,52
POLYDOLI0	Polyarthra dolichoptera	193,85	9,89	24,98
POLYMAJO0	Polyarthra major	60,00	7,80	51,01
ROTARGEN0	Rotaria sp.	0,77	0,10	0,52
SYNCKITI0	Synchaeta kitina	7,69	0,38	1,04
SYNCLONG0	Synchaeta longipes	1,54	0,51	0,52
SYNCOBLO0	Synchaeta oblonga	1,54	0,08	0,52
TRICSIMI0	Trichocerca similis	1,54	0,04	1,04
	Total Cladóceros	10,96	25,21	3,71
	Total Copépodos	61,73	13,68	13,02
	Total Rotiferos	300,77	23,24	83,28
	Total Otros			1,04
	Total	373,46	62,13	100

4. DIAGNÓSTICO DEL GRADO TRÓFICO

Se han considerando los indicadores especificados en la tabla 6 para los valores medios en el embalse, estableciéndose el estado trófico global del embalse según la metodología descrita en la sección 5 de la MEMORIA DEL ESTUDIO.

Tabla 6. Parámetros indicadores y rangos de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración P (µg P /L)	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L) epilimnion	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cel/ml)	<100	100-1000	1000-10000	10000-100000	>100000
VALOR PROMEDIO FINAL	> 4,2	3,4 – 4,2	2,6 - 3,4	1,8 – 2,6	< 1,8

En la tabla 7 se incluye el estado trófico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según la valoración de este estado trófico final.

Tabla 7. Diagnóstico del estado trófico del embalse de Irabia.

INDICADOR	VALOR	ESTADO TRÓFICO
P TOTAL	3,98	Ultraoligotrófico
CLOROFILA a	3,12	Mesotrófico
DISCO SECCHI	4,50	Oligotrófico
DENSIDAD ALGAL	1609	Mesotrófico
ESTADO TRÓFICO FINAL	3,75	OLIGOTRÓFICO

Atendiendo a los criterios seleccionados, la densidad algal y la Clorofila a clasifican el embalse como mesotrófico, mientras que la transparencia determina el embalse como oligotrófico y el fósforo total indica un estado de ultraoligotrofia. Combinando todos los indicadores el estado trófico final para el embalse de IRABIA ha resultado ser **OLIGOTRÓFICO**.

5. DIAGNÓSTICO DEL POTENCIAL ECOLÓGICO

a) Aproximación experimental (PEexp)

Se han considerando los indicadores especificados en la tabla 8, estableciéndose el potencial ecológico del embalse según la metodología descrita en la sección 6.3, apartado a) de la MEMORIA DEL ESTUDIO.

Tabla 8. Parámetros y rangos para la determinación del potencial ecológico experimental.

Indicador	Elementos	Parámetros	Bueno o	superior	Moderado		
		Densidad algal (cel/ml)	< 10 ³		10 ³ -10 ⁴	10⁴-10⁵	>10 ⁵
		Biomasa algal, Clorofila a	< 2,5		2,5-8	8,0-25	>25
		(μg/L)		,	,	,	
		Biovolumen algal (mm³/L)	< 0,5		0,5-2	2-8	>8
		Phytoplankton Assemblage	>	> 3	2-3	1-2	<1
	Fitoplancton	Index (Q)					
Biológico		Trophic Index (TI)	< :	2,79	2,79-3,52	3,52-4,25	>4,25
		Phytoplankton Trophic Index (PTI)	> 3,4		2,6-3,4	1,8-2,6	<1,8
		Phytoplankton Reservoir	< 6.6		6,6-9,4	9,4-12,2	>12,2
		Trophic Index (PRTI)	٠,0		0,0-3,4	3,4-12,2	- 12,2
	Zooplancton	Zooplankton Reservoir	< 6.6		6,6-9,4	9,4-12,2	>12,2
		Trophic Index (ZRTI)		-,-	5,5 5,1	-,,-	,_
	INDICADOR B	IOLÓGICO (1)	>3,4		2,6 - 3,4	1,8 - 2,6	< 1,8
Indicador	Elementos	Parámetros	Muy bueno	Bueno	Moderado	Deficiente	Malo
	Transparencia	Disco de Secchi (m)	>6	3-6	1, 5 -3	0, 7 -1,5	<0, 7
Fisicoquímico	Oxigenación	Concentración O ₂ (mg O ₂ /L)	>8	8-6	6-4	4-2	<2
. ioiooquiiiioo	Nutrientes	Concentración de PT	0-4	4-10	10-35	35-100	>100
	radionio	(μg P/L)		1 10	10 00	00 100	100
	INDICADOR FISICOQUÍMICO (2)		Muy bueno	Bueno	-	Moderado	
			>4,2	3,4-4,2	<3,4		

- (1) La valoración del indicador biológico se obtiene asignando la calificación del elemento de menor puntuación (fitoplancton o zooplancton) o peor calidad, según la metodología *one out, all out*.
- (2) La valoración del indicador fisicoquímico se obtiene asignando la calificación del elemento de menor puntuación o peor calidad, según la metodología *one out, all out*.

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico experimental final sigue el esquema de decisiones indicado en la tabla 9:

Tabla 9. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico Experimental		
Bueno o superior	Muy bueno	Bueno o superior		
Bueno o superior	Bueno	Bueno o superior		
Bueno o superior	Moderado	Moderado		
Moderado	Indistinto	Moderado		
Deficiente	Indistinto	Deficiente		
Malo	Indistinto	Malo		

En la tabla 10 se incluye el potencial indicado por cada uno de los parámetros e indicadores, así como la catalogación de la masa de agua según el potencial ecológico final.

Tabla 10. Diagnóstico del potencial ecológico del embalse de Irabia.

Indicador	Elementos	Parámetros	Valor	Potencial
		Densidad algal (cel/ml)	1609	Moderado
		Clorofila a (µg/L)	3,12	Moderado
		Biovolumen algal (mm³/L)	0,94	Moderado
	Fitoplancton	Phytoplankton Assemblage Index (Q)	3,04	Bueno o superior
Biológico		Phytoplankton Trophic Index (PTI)	3,91	Bueno o superior
		Trophic Index (TI)	2,28	Bueno o superior
		Phytoplankton Reservoir Trophic Index (PRTI)	7,07	Moderado
	Zooplancton	Zooplankton Reservoir Trophic Index (ZRTI)	5,48	Bueno o superior
	INDICADOR BIOLÓGICO			MODERADO
	Transparencia	Disco de Secchi (m)	4,50	Bueno o superior
Fisicoquímico	Oxigenación O ₂ hipolimnética (mg/L O ₂)		1,09	Malo
	Nutrientes Concentración de PT (μg/L P)		11,08	Moderado
	INDICADO	1	MODERADO	
	POTENC	М	ODERADO	

b) Aproximación normativa (PEnorm)

Se han considerado los indicadores, los valores de referencia y los límites de clase B⁺/M (Bueno o superior/Moderado), M/D (Moderado/Deficiente) y D/M (Deficiente/Malo), así como sus ratios de calidad ecológica (RCE), especificados en las tablas 11 y 12, estableciéndose el potencial ecológico del embalse según la metodología descrita en la sección 6.3, apartado b) de la MEMORIA DEL ESTUDIO.

Tabla 11. Valores de referencia propios del tipo (VR_t) y límites de cambio de clase de potencial ecológico de los indicadores de los elementos de calidad de embalses (RD 817/2015).

The Flores		Danimat	In Product	VD	B⁺/M	M/D	D/M
Tipo Elemento	Elemento	Parámetro	Indicador	VR _t	(RCE)	(RCE)	(RCE)
		Biomasa	Clorofila a mg/m ³	2,00	0,211	0,14	0,07
Tine 4	Fitanlanatan	ыотпаза	Biovolumen mm ³ /L	0,36	0,189	0,126	0,063
Tipo 1	Fitoplancton	Commonición	Índice de Catalán (IGA)	0,10	0,974	0,649	0,325
		Composición	Porcentaje de cianobacterias	0,00	0,908	0,607	0,303
			Clorofila a mg/m³	2,60	0,433	0,287	0,143
Ti 7	Fita alla a atau	Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 7	Fitoplancton	Commonición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Biomasa	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Ti 0	Fita allamata a		Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 9	Fitoplancton	Composición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
			Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Biomasa lancton Composición	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Ti 40	Fita allamata a		Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 10	Filopiancion		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
			Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Biomasa	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Ti 44	=:		Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 11	Fitoplancton	Composición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composition	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		D:	Clorofila a mg/m ³	2,40	0,195	0,13	0,065
Tipo 12 F	Fitanlanatan	Biomasa	Biovolumen mm ³ /L	0,63	0,175	0,117	0,058
	Fitoplancton	Composición	Índice de Catalán (IGA)	1,50	0,929	0,619	0,31
			Porcentaje de cianobacterias	0,10	0,686	0,457	0,229
		Biomasa lancton Composición	Clorofila a mg/m ³	2,10	0,304	0,203	0,101
Tine 40	Fitanian at		Biovolumen mm ³ /L	0,43	0,261	0,174	0,087
Tipo 13	Fitoplancton		Índice de Catalán (IGA)	1,10	0,979	0,653	0,326
			Porcentaje de cianobacterias	0,00	0,931	0,621	0,31

Tabla 12. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo.

			RANGOS DEL RCE					
Indicador	Elementos	Parámetros	Bueno o	superior	Moderado	Deficiente	Malo	
		Clorofila a (µg/L)	≥ 0,	≥ 0,433		0,286 - 0,143	< 0,143	
5		Biovolumen algal (mm³/L)	≥ 0,362		0,361 – 0,24	0,23 - 0,12	< 0,12	
Biológico	Fitoplancton	Índice de Catalán (IGA)	≥ 0,	0,982 0,981 – 0,655		0,654 - 0,327	< 0,327	
		Porcentaje de cianobacterias	≥ 0,	715	0,714 – 0,48	0,47 – 0,24	< 0,24	
	Bueno o	superior	Moderado	Deficiente	Malo			
IN	INDICADOR BIOLÓGICO			> 0,6		0,2-0,4	< 0,2	
			RANGOS DE VALORES					
Indicador	Elementos	Parámetros	Muy bueno	Bueno	Moderado	Deficiente	Malo	
	Transparencia	Disco de Secchi (m)	>6	3-6	1, 5 -3	0, 7 -1,5	<0, 7	
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	>8	8-6	6-4	4-2	<2	
	Nutrientes	Concentración de PT (µg P/L)	0-4	4-10	10-35	35-100	>100	
				Bueno	Moderado			
INDICADOR FISICOQUÍMICO			>4,2	3,4-4,2	<3,4			

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico normativo final sigue el esquema de decisiones indicado en la tabla 13.

Tabla 13. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico Experimental		
Bueno o superior	Muy bueno	Bueno o superior		
Bueno o superior	Bueno	Bueno o superior		
Bueno o superior	Moderado	Moderado		
Moderado	Indistinto	Moderado		
Deficiente	Indistinto	Deficiente		
Malo	Indistinto	Malo		

En la tabla 14 se incluye el potencial indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según el potencial ecológico final (*PEnorm*) tras pasar el filtro del indicador fisicoquímico.

Tabla 14. Diagnóstico del potencial ecológico (*PEnorm*) del embalse de Irabia.

Indicador	Elementos	Parámetro	Indicador	Valor	RCE	RCE	ET PEnorm	
		Biomasa	Clorofila a (µg/L)	3,12	0,83	0,8	88 Bueno o superior	
			Biovolumen algal (mm ³ /L)	0,94	0,81	0,8	Bueno o	
			Media	1		0,8	88	
Biológico	Fitoplancton		Índice de Catalán (IGA)	0,04	1,001	1,0	Bueno o superior	
		Composición	Porcentaje de cianobacterias	0,00	1,00	1,0	Bueno o superior	
			Media			1,0	02	
	Media global					0,9	95	
	INDICADOR BIOLÓGICO				0,95		BUENO o SUPERIOR	
Indica	ador	Elementos	Indicador	Valor PEnorm				
	Т	ransparencia	Disco de Secchi (m)	4,50			Bueno	
Fisicoquímico	Fisicoquímico Oxig		O ₂ hipolimnética (mg O ₂ /L)	1,09			Malo	
Nutrientes Concentración de PT (μg P/L)				11,08		Moderado		
	INDICADOR FISICOQUÍMICO				1		MODERADO	
	POTENCIAL ECOLÓGICO PEnorm				МС	DERA	ADO	

ANEXO I. REPORTAJE FOTOGRÁFICO

Figura 6. Vista de la cola del embalse

Figura 7. Vista del punto de acceso