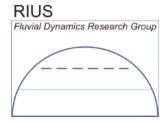


Factores Implicados En La Aparicion Y Desarrollo Masivo De Los Macrófitos

FACTORES MORFO-HIDRÁULICOS

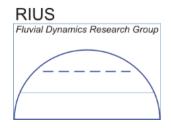


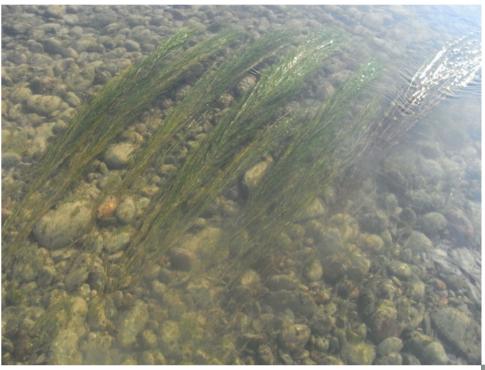
Damià Vericat, Ramon J. Batalla, Laura E. Gonzalo Fluvial Dynamics Research Group University of Lleida

HIPÓTESIS

1. La geometría del cauce y la hidráulica del agua controlan la capacidad de enraizamiento de los macrófitos y, consecuentemente, el crecimiento y proliferación de estos.

$$\uparrow d \rightarrow \downarrow luz \rightarrow \downarrow macr\'ofitos \leftarrow \uparrow turbulencia \leftarrow \uparrow V$$

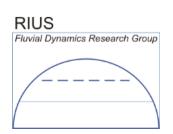

HIPÓTESIS


1. La geometría del cauce y la hidráulica del agua controlan la capacidad de enraizamiento de los macrófitos y, consecuentemente, el crecimiento y proliferación de estos.

$$\uparrow d \rightarrow \downarrow luz \rightarrow \downarrow macr\'ofitos \leftarrow \uparrow turbulencia \leftarrow \uparrow V$$

2. El tamaño y distribución de los sedimentos superficiales del cauce afecta a: (a) el enraizamiento de los macrófitos, (b) la movilidad del cauce y, consecuentemente, (c) el arranque de macrófitos.

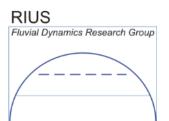
$$\uparrow D_i (mm) \rightarrow \uparrow estable \rightarrow \uparrow macr\'ofitos \leftarrow \uparrow porosidad \leftarrow \uparrow dD_i$$

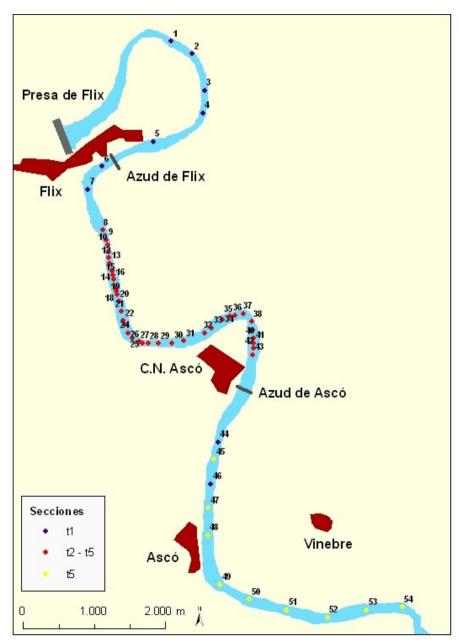


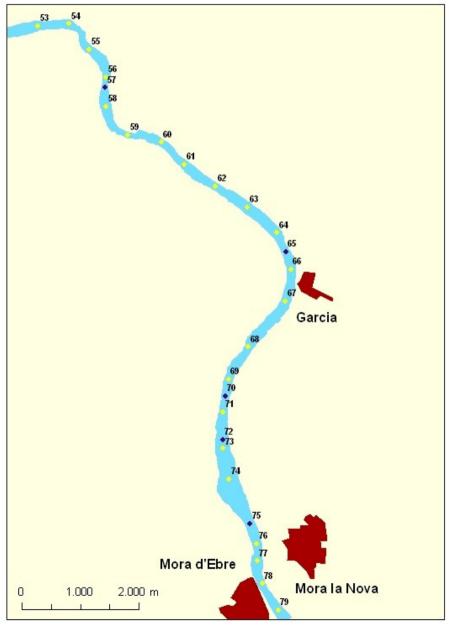
(O1) Estudio temporal y espacial de la densidad de macrófitos en el tramo bajo del Ebro.

(O2) Obtención de un modelo estadístico multivariante entre variables físicas (geometría-hidráulica-granulometría) y densidad de macrófitos.

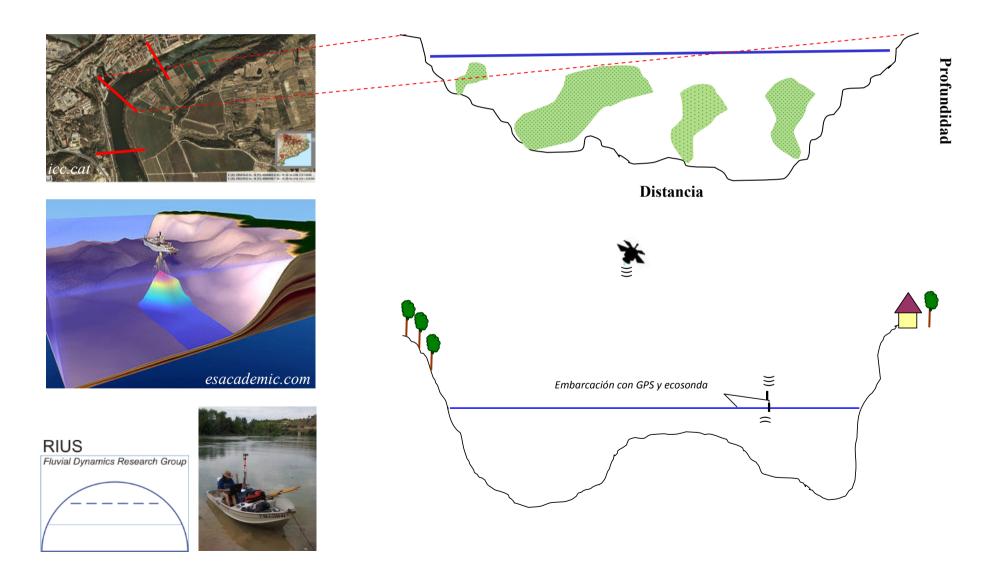
(O3) Estudio de la removilización de macrófitos mediante crecidas de mantenimiento (12:15, RJB).



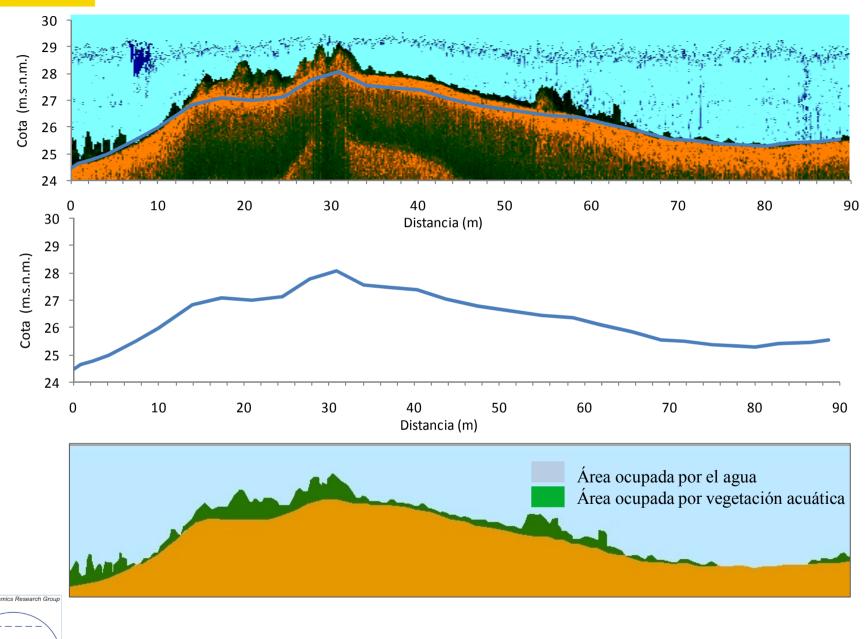

1. Métodos acústicos para la cartografía de macrófitos y determinación de variables de geometría hidráulica

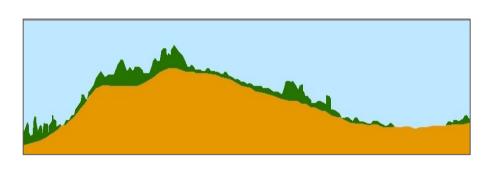


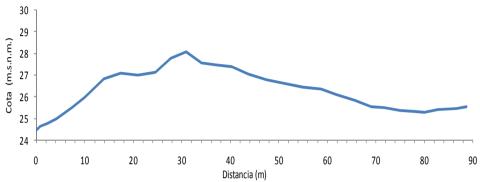
→ 79 Secciones de Control



1. Métodos acústicos para la cartografía de macrófitos y determinación de variables de geometría hidráulica






RIUS

METODOLOGÍA: MACRÓFITOS Y GEOMETRÍA

PLANIMETRÍA

- → Área Macrófitos (AM)
- → Área Sección (AS)

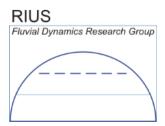
 \rightarrow % MACRÓFITOS = (AM/AS)·100

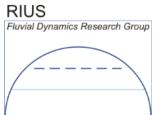
TOPOGRAFÍA

- → Anchura/Profundidad
- → Hidráulica

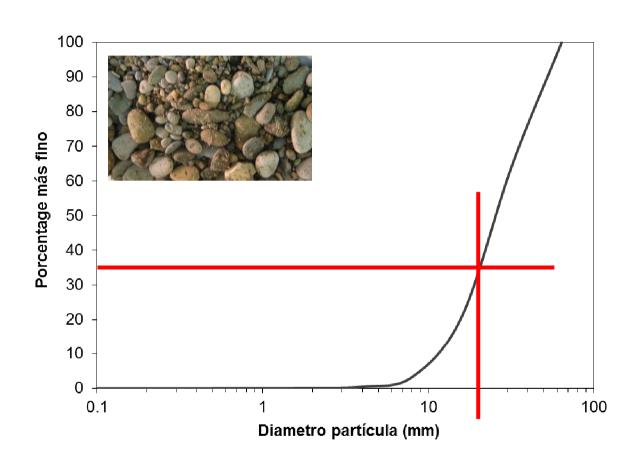
→ GEOMETRÍA, HIDRÁULICA

METODOLOGÍA: GRANULOMETRÍA

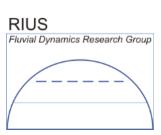

2. Obtención de **datos granulométricos** mediante un muestreador tipo Cooper Scooper (draga adaptada a ríos grandes de gravas)


3. Tratamiento de muestras al **laboratorio** y trabajo de **gabinete** (estadístico, SIG, etc.)

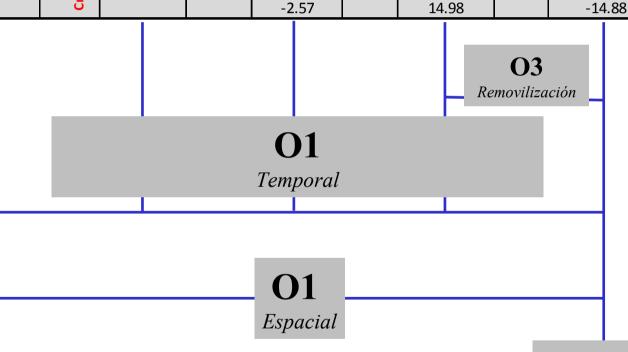
METODOLOGÍA: GRANULOMETRÍA

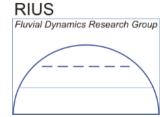


METODOLOGÍA: GRANULOMETRÍA



- → El 35% de la distribución tiene un tamaño inferior a 20 mm
- → Alta variabilidad de tamaños

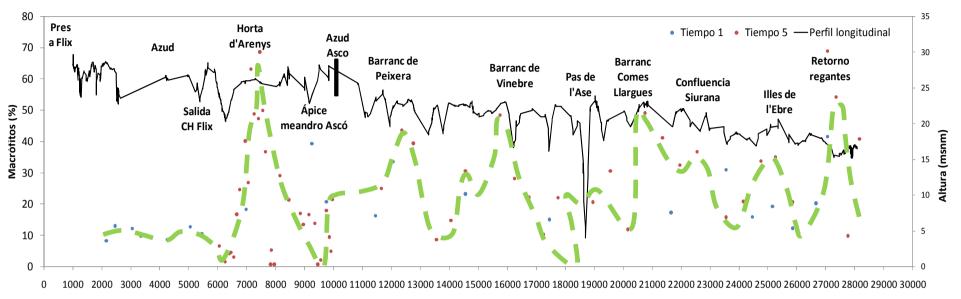



CAMPAÑAS DE CAMPO

		Área ocupada por macrófitos (%)									
		t1	, y 010	t2	01	t3		t4	01	t5	
Fecha	Crecida 13/02/2009		08/07/2009	09 8 2	24/04/2010	201	03/06/2010	a 010	18/10/2010	201	05 y 22 /11/2010
Promedio		41.6	25.6	05/	23.12	cid 6/2	38.1	11/	24.4		
Máximo			1/1 a 17	61.20	20/	67.73	Cre L/0	85.8	FF 04/	68.9	
Mínimo			:2 cid	1.00	FF.3	0.00	11	5.0		0.74	
Reducción/Aumento			uo Gu			-2.57		14.98		-14.88	

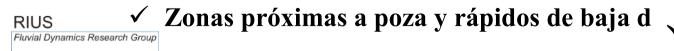
■ 5 CAMPAÑAS:

- t1 y t5: Objetivo 1 (espacial)
- t1,t2,t3,t4,t5: Objetivo 1 (tep.)
- t5: Objetivo 2
- t4-5: Objetivo 3


Tiempo	Fecha	In ici o	Fin	km
t1	08/07/2009	Presa Flix	Mora	28
t2	27/04/2010	CH Flix	Ascó	4
t3	03/06/2010	CH Flix	Ascó	4
t4	18/10/2010	CH Flix	Ascó	4
t5	05 y 22 /11/2010	CH Flix	Mora	22

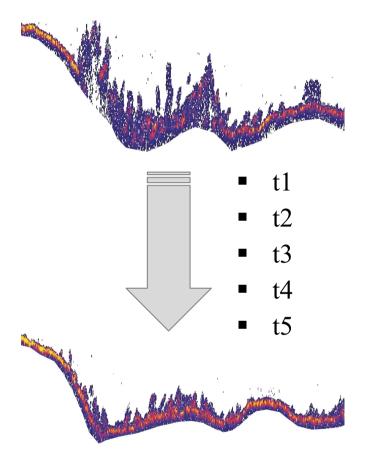
O2 Modelo

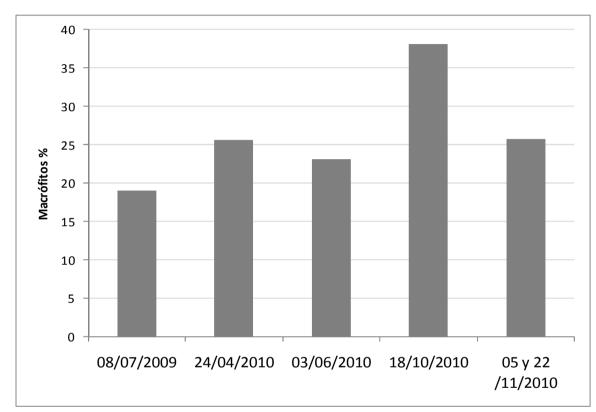
Multivariable

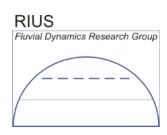


RESULTADOS: VARIABILIDAD ESPACIAL (01)

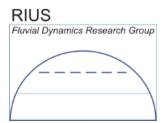
Distancia a Flix (m)


- Primer tramo con valores bajos (Menadro de Flix)
- Segundo tramo con un patrón sinuoso
 - ✓ Zonas de transición de poza a rápido ↑

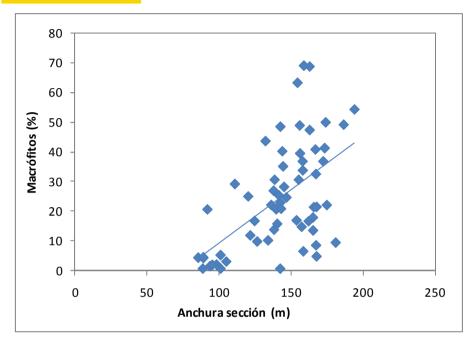


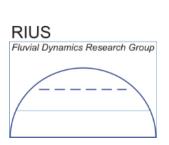


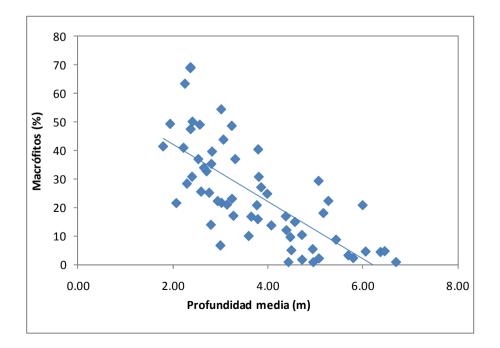
RESULTADOS: VARIABILIDAD TEMPORAL (01)


• Aumento de la densidad a medida que transcurre el año hidrológico con descensos puntuales asociados a crecidas capaces de removilizar el lecho.

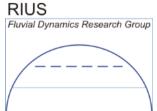
RESULTADOS: MODELO MULTIVARIANTE (O2


	Macrofitos	Distancia	W	Dmax	Dmed	Tensión	d16	d50	d84	d max b	sorting
Macrófits	1.00										
Distancia	0.61	1.00									
W	0.47	0.25	1.00								
Dmax	-0.72	-0.41	-0.57	1.00							
Dmed	-0.72	-0.49	-0.58	0.86	1.00						
Tensión	-0.72	-0.49	-0.58	0.86	1.00	1.00					
d16	0.38	0.07	0.35	-0.46	-0.42	-0.42	1.00				
d50	0.34	0.34	0.17	-0.44	-0.39	-0.39	0.75	1.00			
d84	0.45	0.46	0.45	-0.55	-0.52	-0.52	0.59	0.85	1.00		
d max b	0.36	0.67	0.45	-0.45	-0.46	-0.46	0.27	0.58	0.80	1.00	
sorting	-0.11	0.17	-0.15	0.21	0.09	0.09	-0.75	-0.51	-0.17	0.04	1.00
006											


W: anchura, Dmax: profundidad máxima, Dmed: profundidad media, Tensión: tensión de corte caudal medio, d16: percentil 16 de la distribución granulométrica, d50: percentil 50 –mediana- de la distribución granulométrica, d84: ercentil 84 de la distribución granulométrica, dmax b: longitud eje b de la partícula de mayor tamaño de la muestra granulométrica, sorting: dispersión granulométrica.


• El análisis multivariante muestra como la **profundidad media** es la variable más explicativa del porcentaje de macrofitos en las secciones de control.

RESULTADOS: MODELO MULTIVARIANTE (O2)

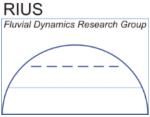


RESULTADOS: MODELO MULTIVARIANTE (O2

	Macrofitos	Distancia	W	Dmax	Dmed	Tensión	d16	d50	d84	d max b	sorting
Macrófits	1.00										
Distancia	0.61	1.00									
W	0.47	0.25	1.00								
Dmax	-0.72	-0.41	-0.57	1.00							
Dmed	-0.72	-0.49	-0.58	0.86	1.00						
Tensión	-0.72	-0.49	-0.58	0.86	1.00	1.00					
d16	0.38	0.07	0.35	-0.46	-0.42	-0.42	1.00				
d50	0.34	0.34	0.17	-0.44	-0.39	-0.39	0.75	1.00			
d84	0.45	0.46	0.45	-0.55	-0.52	-0.52	0.59	0.85	1.00		
d max b	0.36	0.67	0.45	-0.45	-0.46	-0.46	0.27	0.58	0.80	1.00	
sorting	-0.11	0.17	-0.15	0.21	0.09	0.09	-0.75	-0.51	-0.17	0.04	1.00

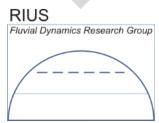
W: anchura, Dmax: profundidad máxima, Dmed: profundidad media, Tensión: tensión de corte caudal medio, d16: percentil 16 de la distribución granulométrica, d50: percentil 50 –mediana- de la distribución granulométrica, d84: ercentil 84 de la distribución granulométrica, dmax b: longitud eje b de la partícula de mayor tamaño de la muestra granulométrica, sorting: dispersión granulométrica.

- El análisis multivariante muestra como la **profundidad media** es la variable más explicativa del porcentaje de macrofitos en las secciones de control.
- Aunque **la granulometría** muestra una significativa correlación con la densidad de macrófitos no es lo suficiente para ser incluida en el modelo

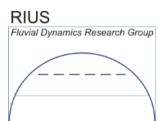

%Macrofitos = 61.9 – 10·Profundidad
$$(r^2 = 0.52)$$

RESULTADOS: REMOVILIZACIÓN CRECIDAS MANTENIMIENTO (O3)

Es posible diseñar y ejecutar crecidas artificiales des de los embalses con el objetivo de reducir la densidad de macrófitos?



Se explicará detalladamente en la charla de las 12:15 (Ramon J. Batalla)


CONCLUSIONES

- 1. La densidad de macrófitos se mantiene **muy baja** durante los **primeros 7 km** aguas abajo de la presa de Flix.
- 2. A partir de la Central Hidroeléctrica de Flix, la presencia de vegetación tiene un **patrón sinuoso** con sucesivos ascensos y descensos (relación morfología y geometría del cauce).
- 3. Los **máximos porcentajes** de macrófitos se alcanzan en las zonas del río de **transición a rápido** (riffle), mientras que los **mínimos** tienen lugar **en las pozas** (pools).
- 4. La proporción de macrófitos varía durante el año hidrológico. El máximo porcentaje de macrófitos se alcanza a principios de otoño, llegando a valores puntuales del 85%, mientras que los mínimos tienen lugar después de las crecidas de mantenimiento.

- 5. Las variables físicas que mantienen relación significativa con la proporción de macrófitos son: la **profundidad** (-), la **distancia a la presa** (+), la **anchura del cauce** (+) y la **granulometría** (+).
- 6. En el análisis de **regresión multivariante**, la variable que mejor se ajusta al modelo de predicción de densidad de macrófitos es la **profundidad media**. Por lo que a pesar de que la **granulometría** (tamaño partículas más gruesas, D₈₄) guarda relación significativa con la presencia de macrófitos, al incluir esta variable junto con las otras variables hidráulicas, **pierde el peso significativo** necesario para ser incluida al modelo.

