

INFORME FINAL DEL EMBALSE DE GALLIPUÉN AÑO 2006

UTE DBO5, SL-ICA, SL-ENTECSA C/MIGUEL MENÉNDEZ BONETA, 2 Puerta 8 28460 LOS MOLINOS (MADRID) CIF: G-84535319

CONSULTOR: UTE RED BIOLÓGICA EBRO

Oficinas UTE Madrid: c/ Miguel Menéndez Boneta 2-4, puerta 8 28460 Los Molinos, Madrid TF y FAX 91 855 00 29 E-mail: consultoria@ica1.e.telefonica.net

MAYO 2007

ÍNDICE

			Página
<u>1.</u>	INTE	RODUCCIÓN	1
<u>2.</u>	DES	CRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE	2
	2.1.	Ámbito geográfico	2
	2.2.	Características morfométricas e hidrológicas	2
	2.3	Usos del agua	3
	2.4	Registro de zonas protegidas	3
<u>3.</u>	<u>DES</u>	CRIPCIÓN DE LOS TRABAJOS REALIZADOS	4
<u>4.</u>	DIAC	SNÓSTICO DE LA SITUACIÓN ACTUAL	5
	4.1.	Características físico-químicas de las aguas	5
	4.2.	Hidroquímica del embalse	7
	4.3.	Productores primarios y concentración de pigmentos fotosintetizadores	8
<u>5.</u>	DIAC	SNÓSTICO DEL GRADO TRÓFICO	9
<u>6.</u>	DEF	INICIÓN DEL POTENCIAL ECOLÓGICO	10

ANEXO I: REPORTAJE FOTOGRÁFICO

1. INTRODUCCIÓN

El presente documento recoge los resultados de los trabajos realizados en el embalse de Colomina y la interpretación de los mismos, con una disposición temática similar para los 43 embalses y lagos estudiados, a efectos de proporcionar una referencia fija que facilite la consulta y explotación de la información contenida en ellos.

En general, se recurre a presentaciones gráficas y sintéticas de la información, acompañadas de un texto conciso, lo que permitirá una ágil y rápida consulta del documento.

En el **Anexo I** se incluye un reportaje fotográfico que refleja el estado del embalse durante el periodo estudiado (año hidrológico 2005-2006).

En apartados sucesivos se comentan los siguientes aspectos:

- Resultados del estudio en el embalse (FASE DE CARACTERIZACIÓN) de todos los aspectos tratados (hidráulicos, físico-químicos y biológicos), que culminan en el diagnóstico del grado trófico.
- Definición del "Potencial Ecológico", tras la aplicación de indicadores biológicos y físico-químicos propuestos en la Directiva Marco de Aguas.

2. DESCRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE

2.1. Ámbito geográfico

Geológicamente, la cuenca del Embalse de Gallipuén, se enclava entre las Eras del Mesozoico y Cenozoico. Las dolomías, calizas y margas, pertenecientes al Piso Cenomaniense-Turoniense, dentro del Sistema Cretácico, Serie Superior; las lutitas al Sistema Paleógeno, y los depósitos aluviales, gravas, limos y arcillas al Cuaternario.

El embalse de Gallipuén se sitúa dentro del término municipal de Alcorisa, en la provincia de Teruel. Regula principalmente las aguas del río Guadalope.

2.2. Características morfométricas e hidrológicas

Se trata de un embalse monomíctico, de moderadas dimensiones, con un área de cuenca de menos de $1000 \ \mathrm{km}^2$.

La cuenca vertiente al embalse de Gallipuén tiene una superficie de escorrentía directa de 147 km².

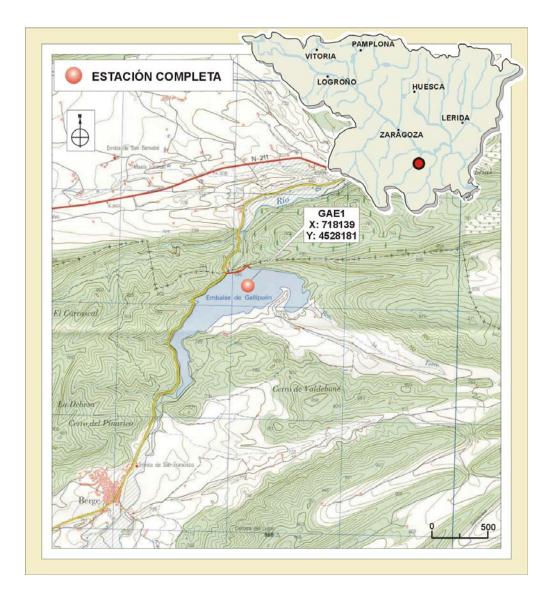
El embalse tiene una extensión de 44 has en su máximo nivel normal y una capacidad total de 4,36 hm3. Tiene una profundidad media de 11 m, siendo la profundidad máxima de 30 m. En el cuadro I se presentan las características morfométricas del embalse y de las subcuencas.

CUADRO 1
CARACTERÍSTICAS MORFOMÉTRICAS DEL EMBALSE Y SUBCUENCAS

Superficie de la cuenca	147 Km2
Capacidad total N.M.N.	3,53 Hm3
Capacidad útil	3,53 Hm3
Aportación media anual	21 Hm3
Superficie inundada	44 Ha
Cota máximo embalse normal	694,46 m

2.3 Usos del agua

Las aguas del embalse están destinadas principalmente a ser usadas para regadío.

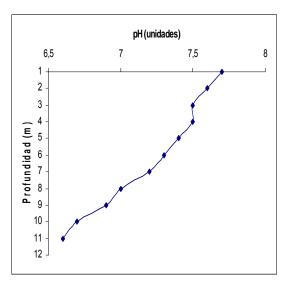

2.4 Registro de zonas protegidas

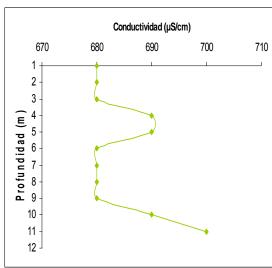
El embalse de Gallipuén no forma parte del Registro de Zonas Protegidas elaborado por la Confederación Hidrográfica del Ebro, en contestación al artículo 6 de la Directiva Marco del Agua, en ninguna de sus categorías.

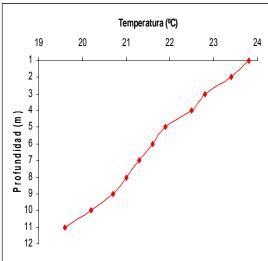
3. DESCRIPCIÓN DE LOS TRABAJOS REALIZADOS

Para acometer la caracterización del embalse se ha ubicado una estación de muestreo en las inmediaciones de la presa (E1).

Se ha realizado 1 campaña de muestreo el 5 de Septiembre de 2006. En esa fecha hay estratificación térmica en el embalse.


4. DIAGNÓSTICO DE LA SITUACIÓN ACTUAL


4.1. Características físico-químicas de las aguas


Del comportamiento observado se desprenden las siguientes apreciaciones:

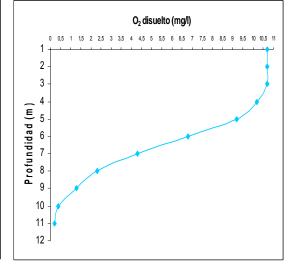

- La temperatura del agua es alta que oscila entre los 19,6,°C en el fondo- y los 23,8
 °C -máximo registrado en superficie-. En el momento del muestreo (Septiembre 2006) presentaba termoclina a una profundidad de 4 m.
- El pH del agua en superficie es básico, con un valor de 7,7 ud.. Siendo el del fondo ácido, con un valor de 6,6 ud.
- El valor del disco de Secchi, que se utiliza para caracterizar la transparencia del agua es de 1,5 m. Encontrándose la capa fótica a 2,55 m de espesor.
- Las condiciones de oxigenación de la columna de agua son en el epilimnion hay una concentración de O₂ de 10,70 mg/l, siendo la concentración de O₂ en el Hipolimnion de 3,50 mg/l. Se han detectado condiciones anóxicas (<1 mg O2/l) en profundidades superiores a 10 m.
- La conductividad de las aguas es elevada, con valores de 680 μ S/cm en el fondo y de 700 μ S/cm en superficie

GRÁFICO 1PERFILES FÍSICO-QUÍMICOS DEL EMBALSE

4.2. Hidroquímica del embalse

De los resultados analíticos obtenidos en la campaña correspondiente al año hidrológico 2005-06, se desprenden las siguientes conclusiones:

- Las concentraciones de nutrientes son bajas para los compuestos fosforados y los compuestos nitrogenados. No obstante, ambos se encuentran dentro de los rangos conocidos para el embalse.
- La concentración media de fósforo total en el muestreo, y toda la columna de agua, adquiere un valor de 0,015 mg/l P totalmente soluble.
- La concentración de nitratos (NO3) alcanza un valor de 0,04 mg/l N en la muestra tomada en superficie, en cambio en la muestra tomada en el fondo toma un valor de 0,12 mg/l. En cuanto al contenido en NH4, el comportamiento es similar: 0,02 mg/l (superficie) y 0,18 (fondo).

4.3. Productores primarios y concentración de pigmentos fotosintetizadores

De los resultados obtenidos se desprenden las siguientes apreciaciones.

En el análisis realizado se han identificado un total de 21 especies, distribuidas entre los siguientes grupos taxonómicos:

- 3 cianobacterias
- 2 criptofitas
- 1 dinofita
- 1 bacillariofícea
- 13 clorofitas
- 1 euglenofita

La composición y estructura poblacional, en el periodo estival de 2.006, está caracterizado por la cianobacteria *Aphanothece chlathrata* que es la más abundante. Sin embargo es el grupo de las clorofíceas el que más especies tiene representadas (18 especies).

Los grupos menos representados son dinofíceas, bacillariofíceas y euglenofíceas, todos ellos con una única especie.

El valor que se registra de la clorofila a durante el periodo de estudio es 13,6 μg/l.

5. DIAGNÓSTICO DEL GRADO TRÓFICO

En función de la variedad de índices que se plasma en el **Cuadro 2**, se puede catalogar al embalse del Gallipuén, como **eutrófico**.

Atendiendo a criterios de la OCDE el parámetro causal básico (PT) sitúa al embalse en rangos de oligotrofia. Por su parte, el parámetro de respuesta (clorofila a) presenta un resultado de eutrofia.

Los resultados obtenidos según el índice TSI (Carlson,1974), estimados a partir del la clorofila a y del fósforo total, definen al embalse como mesotrófico, mientras los obtenidos a partir la profundidad del disco de Secchi lo catalogan como eutrófico.

CUADRO 2

RESUMEN DE LOS PARÁMETROS INDICADORES DE ESTADO TRÓFICO

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración P (μg/l P)	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>12	12-6	6-3	3-1,5	<1,5
Clorofila a (µg/l) en epilimnion	0-1	1-2,5	2,5-8	8,0-25	>25
TSI	<20	20-40	40-60	60-80	>80
Densidad algal (cel/ml)	<100	100-1000	1000-10000	10000-100000	>100000

CUADRO 3
DIAGNOSTICO DEL ESTADO TROFICO SEGÚN CRITERIOS OCDE

EMBALSE	CÓDIGO MAS	FOSFORO TOTAL	CLOROFILA A	DENSIDAD ALGAL	DISCO DE SECCHI	ESTADO TROFICO FINAL
Embalse de Gallipuén	EB0000913	OLIGOTRÓFICO	EUTRÓFICO	HIPEREUTRÓFICO	EUTRÓFICO	EUTRÓFICO

6. DEFINICIÓN DEL POTENCIAL ECOLÓGICO

En el apartado 6 de la MEMORIA DEL ESTUDIO -POTENCIAL ECOLÓGICO- se describe la metodología empleada para clasificar el potencial ecológico.

Tal y como se refleja en el cuadro siguiente, el potencial ecológico del embalse de Gallipuén es **DEFICIENTE**.

CUADRO 4POTENCIAL ECOLÓGICO DEL EMBALSE DE GALLIPUÉN

Indicador	Elementos	Parámetros	Óptimo	Bueno	Moderado	Deficiente	Malo	Valor Observado	Valoración Parámetro	Val. Elemento	Val. Indicador	IPE
		Densidad algal (cel/ml)	<100	100-1000	1000-10000	10000-100000	>100000	279058,60	1			
		Biomasa algal, Clorofila a (µg/l)	0-1	1-2,5	2,5-8	8,0-25	>25	13,57	2			
	Composición, abundancia y biomasa de fitoplancton	Biovolumen algal (mm³/l)	<0,1	0,1-0,5	0,5-2	2-8	>8	680,50	1	2 **No valorar		
Biológico	,	Índice de grupos algales (Iga)	<10	10-100	100-200	200-300	>300	193,40	3		2	
		Cianofíceas tóxicas (cel/ml)	0-500	500-2000	2000-20000	20000-100000	>100000	4962,97	3			2
	Composición, abundancia y biomasa de zooplancton	Ratio cladoceros grandes / totales	>0,5	0,3-0,5	0,1-0,3	0,05-0,1	<0,05	0,23	5			
		Ratio biomasa Zooplancton / Clorofila a	> 70	50-70	20-50	10-20	<10	5,77	1			
	Transparencia	Profundidad Disco de Secchi (m)	>12	12-6	6-3	3-1,5	<1,5	1,50	1	1		
Físico-	Condiciones de oxigenación	Concentración hipolimnética O2 (mg/l O2)	>8	8-6	6-4	4-2	<2	6,00	3	3	3	
Químico	Concentración de nutrientes	Concentración de PT: media anual (µg/l P)	0-4	4-10	10-35	35-100	>100	0,05	5	5	3	
	Elemento combinado	TSI	<20	20-40	40-60	60-80	>80	51,18	3	3		
		Valoración del parámetro	5	4	3	2	1					

ADICIONAL INFORME EMBALSE DE GALLIPUÉN 2006

Durante el año 2022 se han revisado los datos del embalse de Gallipuén recopilados durante el año 2006, en aplicación del Real Decreto 817/2015, de 11 de septiembre, por el que se establecen los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental, a partir de la trasposición de la Directiva Marco del Agua (DMA).

La metodología utilizada ha consistido en obtener del informe de dicho año los datos necesarios para estimar de nuevo el estado trófico y el potencial ecológico y, recalcular el valor correspondiente en cada variable y en el estado final del embalse, utilizando las métricas publicadas en 2015, lo que permite comparar el estado de los embalses en un ciclo interanual de forma homogénea.

En cada apartado considerado se indica la referencia del apartado del informe original al que se refiere este trabajo adicional.

1. ESTADO TRÓFICO

Para evaluar el grado de eutrofización o estado trófico de una masa de agua se aplican e interpretan una serie de indicadores de amplia aceptación. En cada caso, se ha tenido en cuenta el valor de cada indicador en función de las características limnológicas básicas de los embalses. Así, se han podido interpretar las posibles incoherencias entre los diversos índices y parámetros y establecer la catalogación trófica final en función de aquellos que, en cada caso, responden a la eutrofización de las aguas.

Dentro del presente estudio se han considerado los siguientes índices y parámetros:

a) Concentración de nutrientes. Fósforo total (PT)

La concentración de fósforo total en el epilimnion del embalse es un parámetro decisivo en la eutrofización ya que suele ser el factor limitante en el crecimiento y reproducción de las poblaciones algales o producción primaria. De entre los índices conocidos, se ha adoptado en el presente estudio, el utilizado por la Organización para la Cooperación y el Desarrollo Económico (OCDE) resumido en la tabla A1, ya que es

el que mejor refleja el grado trófico real en los casos estudiados y además es el de más amplio uso a nivel mundial y en particular en la Unión Europea (UE), España y la propia Confederación Hidrográfica del Ebro (CHE). Desde 1984 se demostró que los criterios de la OCDE, que relacionan la carga de nutrientes con las respuestas de eutrofización, eran válidos para los embalses españoles.

Tabla A1. Niveles de calidad según la concentración de fósforo total.

Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración PT (µg					
P/L)	0-4	4-10	10-35	35-100	>100

b) Fitoplancton (Clorofila a, densidad algal)

A diferencia del anterior, el fitoplancton es un indicador de respuesta trófica y, por lo tanto, integra todas las variables causales, de modo que está influido por otros condicionantes ambientales además de estarlo por los niveles de nutrientes. Se utilizan dos parámetros como estimadores de la biomasa algal en los índices: concentración de clorofila a en la zona fótica (µg/L) y densidad celular (nº células/ml).

Al contar en este estudio mayoritariamente con sólo una campaña de muestreo, y por tanto no contar con una serie temporal que nos permitiera la detección del máximo anual, se utilizaron las clases de calidad relativas a la media anual (tabla A2). La utilización de los límites de calidad relativos a la media anual de clorofila se basó en el hecho de que los muestreos fueron realizados durante la estación de verano. Según la bibliografía limnológica general, el verano coincidiría con un descenso de la producción primaria motivado por el agotamiento de nutrientes tras el pico de producción típico de finales de primavera. Por ello, la utilización de los límites o rangos relativos al máximo anual resultaría inadecuada.

Para la densidad celular, basamos nuestros límites de estado trófico en la escala logarítmica basada en los estudios limnológicos de Margalef, ya utilizada para incluir más clases de estado trófico en otros estudios (tabla A2). Estos resultados se ajustaban de forma más aproximada a los obtenidos mediante otras métricas estándar de la OCDE como las de P total o clorofila. En el presente estudio, los índices elegidos son los siguientes:

Tabla A2. Niveles de calidad según la clorofila *a* y la densidad algal del fitoplancton.

Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Clorofila a (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad (cél./ml)	<100	100-1000	1000-10000	10000-100000	>100000

c) Transparencia de la columna de agua. Disco de Secchi (DS)

Por su parte, la transparencia, medida como profundidad de visibilidad del disco de Secchi (media y mínimo anual en m), está también íntimamente relacionada con la biomasa algal, aunque más indirectamente, ya que otros factores como la turbidez debida a sólidos en suspensión, o los fenómenos de dispersión de la luz que se producen en aguas carbonatadas, afectan a esta variable.

Se utilizaron las clases de calidad relativas al mínimo anual de transparencia según criterios OCDE. Se utilizaron en este caso los rangos relativos al mínimo anual (tabla A3) debido a varios factores: por un lado, la transparencia en embalses es generalmente menor que en lagos; por otro lado, en verano se producen resuspensiones de sedimentos como consecuencia de los desembalses para regadío, y por último, la mayoría de los embalses muestreados son de aguas carbonatadas, con lo que la profundidad de Secchi subestimaría también la transparencia.

Tabla A3. Niveles de calidad según la transparencia.

Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Disco Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7

Catalogación trófica final

Se han considerado la totalidad de los índices expuestos, que se especifican en la tabla A4, estableciéndose el estado trófico global de los embalses estudiados según la metodología descrita a continuación, utilizando el valor promedio de los dos muestreos en su caso.

Tabla A4. Resumen de los parámetros indicadores de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración PT (μg	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cél./ml)	<100	100-1000	1000-10000	10000-100000	>100000

Sobre la base de esta propuesta, en la tabla A5 se incluye la catalogación de las diferentes masas de agua por parámetro. Así, para cada uno de los embalses, se asignó un valor numérico (de 1 a 5) según cada clase de estado trófico.

Tabla A5. Valor numérico asignado a cada clase de estado trófico.

ESTADO TRÓFICO	VALORACIÓN
Ultraoligotrófico	1
Oligotrófico	2
Mesotrófico	3
Eutrófico	4
Hipereutrófico	5

La valoración del estado trófico global final se calculó mediante la *media* de los valores anteriores, re-escalada a cinco rangos de estado trófico (es decir, el intervalo 1-5, de 4 unidades, dividido en 5 rangos de 0,8 unidades de amplitud).

2. ESTADO DE LA MASA DE AGUA

El **estado** de una masa de agua es el grado de alteración que presenta respecto a sus condiciones naturales, y viene determinado por el *peor valor* de su estado ecológico y químico.

- El <u>estado ecológico</u> es una expresión de la calidad de la estructura y el funcionamiento de los ecosistemas acuáticos asociados a las aguas superficiales en relación con las condiciones de referencia (es decir, en ausencia de alteraciones). En el caso de los embalses se denomina *potencial ecológico* en lugar de estado ecológico. Se determina a partir de indicadores de calidad (biológicos y fisicoquímicos).

 El <u>estado químico</u> de las aguas es una expresión de la calidad de las aguas superficiales que refleja el grado de cumplimiento de las normas de calidad ambiental de las sustancias prioritarias y otros contaminantes.

2.1. POTENCIAL ECOLÓGICO

2.1.1. INDICADORES DE CALIDAD BIOLÓGICOS: FITOPLANCTON

Como consecuencia de la aprobación de la IPH (Instrucción de Planificación Hidrológica, Orden ARM/2656/2008), se ha realizado una aproximación al <u>potencial ecológico</u> para el elemento de calidad <u>fitoplancton</u> denominada *propuesta normativa*. En ella se establecen las condiciones de máximo potencial para los siguientes parámetros: clorofila a, biovolumen, Índice de Grupos Algales (IGA) y porcentaje de cianobacterias, en función de la tipología del embalse.

Se debe seguir el procedimiento descrito en el Protocolo MFIT-2013 Versión 2 para el cálculo del RCE de cada uno de los cuatro parámetros:

- Cálculo de Ratio de Calidad Ecológico (RCE)

Cálculo para clorofila a:

RCE= [(1/Chla Observado) / (1/Chla Máximo Potencial Ecológico)]

Cálculo para biovolumen:

RCE= [(1/biovolumen Observado) / (1/ biovolumen Máximo Potencial Ecológico)]

Cálculo para el Índice de Grupos Algales (IGA):

RCE= [(400-IGA Observado) / (400- IGA Máximo Potencial Ecológico)]

Cálculo para el porcentaje de cianobacterias:

RCE= [(100 - % cianobacterias Observado) / (100 - % cianobacterias Máximo Potencial Ecológico)]

1) Concentración de clorofila a

Del conjunto de pigmentos fotosintetizadores de las microalgas de agua dulce, la clorofila a se emplea como un indicador básico de biomasa fitoplanctónica. Todos los grupos de microalgas contienen clorofila a como pigmento principal, pudiendo llegar a

representar entre el 1 y el 2 % del peso seco total. La clasificación del potencial ecológico de acuerdo con la concentración de clorofila *a* se indica en la tabla A6.

Tabla A6. Clases de potencial ecológico según el RCE de la concentración de clorofila a.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango <i>Tipos 1, 2 y 3</i>	> 0,211	0,210 - 0,14	0,13 - 0,07	< 0,07
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,433	0,432 - 0,287	0,286 - 0,143	< 0,143
Rango <i>Tipo 12</i>	> 0,195	0,194 - 0,13	0,12 - 0,065	< 0,065
Rango <i>Tipo 13</i>	> 0,304	0,303 - 0,203	0,202 - 0,101	< 0,101
Valoración de cada clase	2	3	4	5

2) Biovolumen algal

El biovolumen es una medida mucho más precisa de la biomasa algal, por tener en cuenta el tamaño o volumen celular de cada especie, además del número de células. La clasificación del potencial ecológico de acuerdo al biovolumen de fitoplancton se indica en la tabla A7.

Tabla A7. Clases de potencial ecológico según el RCE del biovolumen algal del fitoplancton.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,189	0,188 - 0,126	0,125 - 0,063	< 0,063
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,362	0,361 - 0,24	0,23 - 0,12	< 0,12
Rango Tipo 12	> 0,175	0,174 – 0,117	0,116 – 0,058	< 0,058
Rango Tipo 13	> 0,261	0,260 - 0,174	0,173 – 0,087	< 0,087
Valoración de cada clase	2	3	4	5

3) Índice de grupos algales (IGA)

Se ha aplicado un índice basado en el biovolumen relativo de diferentes grupos algales del fitoplancton, denominado *IGA*, y que viene siendo utilizado por CHE desde 2010.

El índice IGA se expresa:

$$Iga = \frac{1 + 0.1 * Cr + Cc + 2 * (Dc + Chc) + 3 * Vc + 4 * Cia}{1 + 2 * (D + Chc) + Chnc + Dhc}$$

Siendo,

Cr	Criptófitos	Cia	Cianobacterias
Cc	Crisófitos coloniales	D	Dinoflageladas
Dc	Diatomeas coloniales	Cnc	Crisófitos no coloniales
Chc	Clorococales coloniales	Chnc	Clorococales no coloniales
Vc	Volvocales coloniales	Dnc	Diatomeas no coloniales

En cuanto al *IGA*, se han considerado los rangos de calidad establecidos en la tabla A8.

Tabla A8. Clases de potencial ecológico según el RCE del Índice de Grupos Algales (IGA).

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,974	0,973 - 0,649	0,648 - 0,325	< 0,325
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,982	0,981 - 0,655	0,654 - 0,327	< 0,327
Rango Tipo 12	> 0,929	0,928 - 0,619	0,618 – 0,31	< 0,31
Rango <i>Tipo 13</i>	> 0,979	0,978 - 0,653	0,652 - 0,326	< 0,326
Valoración de cada clase	2	3	4	5

4) Porcentaje de cianobacterias

El aumento de la densidad relativa de cianobacterias se ha relacionado en numerosas ocasiones con procesos de eutrofización.

Para el cálculo del porcentaje de cianobacterias se ha utilizado el procedimiento descrito en el Protocolo de análisis y cálculo de métricas de fitoplancton en lagos y embalses Versión 2 (MAGRAMA, 2016). Se aplica para el cálculo la siguiente fórmula:

$$\%CIANO = \frac{\text{BVOLcia} - \left[\text{BVOLchr} - \left(\text{BVOLmic} + \text{BVOLwor}\right)\right]}{BVOLtot}$$

Donde: BVOL_{CIA} Biovolumen de cianobacterias totales

BVOL_{CHR} Biovolumen de Chroococcales

BVOL_{MIC} Biovolumen de *Microcystis*

BVOLWOR Biovolumen de Woronichinia

BVOL_{TOT} Biovolumen total de fitoplancton

Los valores de cambio de clases se establecen como se muestran en la tabla A9.

Tabla A9. Clases de potencial ecológico según el RCE del porcentaje de cianobacterias.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,908	0,907 - 0,607	0,606 - 0,303	< 0,303
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,715	0,714 - 0,48	0,47 - 0,24	< 0,24
Rango <i>Tipo 12</i>	> 0,686	0,685 - 0,457	0,456 - 0,229	< 0,229
Rango <i>Tipo 13</i>	> 0,931	0,930 - 0,621	0,620 - 0,31	< 0,31
Valoración de cada clase	2	3	4	5

Posteriormente, es necesario llevar a cabo la *transformación de los valores de RCE obtenidos* a una escala numérica equivalente para los cuatro indicadores (RCEtrans). Las ecuaciones varían en función del tipo de embalse.

Tipos 1, 2 y 3

Clorofila a		
RCE>0,21	RCE _{trans} = 0,5063 x RCE + 0,4937	
RCE ≤0,21	RCE _{trans} = 2,8571 x RCE	
	•	

Biovolumen		
RCE >0,19	RCE _{trans} = 0,4938 x RCE + 0,5062	
RCE ≤0,19	RCE _{trans} = 3,1579 x RCE	

% Cianobacterias		
RCE >0,91	RCE _{trans} = 4,4444 x RCE - 3,4444	
RCE ≤0,91	RCE _{trans} = 0,6593 x RCE	

Índice de Grupos Algales (IGA)		
RCE >0,9737	RCE _{trans} = 15,234 x RCE - 14,233	
RCE ≤0,9737	RCE _{trans} = 0,6162 x RCE	

Tipos 7, 8, 9, 10 y 11

Clorofila a	
RCE>0,43	RCE _{trans} = 0,7018 x RCE + 0,2982
RCE ≤0,43	RCE _{trans} = 1,3953 x RCE

Biovolumen	
RCE >0,36	RCE _{trans} = 0,625 x RCE + 0,375
RCE ≤0,36	RCE _{trans} = 1,6667 x RCE

% Cianobacterias	
RCE >0,72	RCE _{trans} = 1,4286 x RCE - 0,4286
RCE ≤0,72	RCE _{trans} = 0,8333 x RCE

Índice de Grupos Algales (IGA)	
RCE >0,9822	RCE _{trans} = 22,533 x RCE - 21,533
RCE ≤0,9822	RCE _{trans} = 0,6108 x RCE

Tipos 6 y 12

Clorofila a	
RCE >0,195	RCE _{trans} =0,497x RCE + 0,503
RCE ≤ 0,195	RCE _{trans} = 3,075 x RCE

	Biovolumen			
	RCE > 0,175	RCE _{trans} = 0,4851 x RCE + 0,5149		
Γ	RCE ≤ 0,175	RCE _{trans} = 3,419 x RCE		

% Cianobacterias			
RCE > 0,686	RCE _{trans} = 1,2726x - 0,2726		
RCE ≤ 0.686	RCE _{trans} = 0.875 x RCE		

Índice de Grupos Algales (IGA)				
RCE > 0,929 RCE _{trans} = $5,6325x - 4,6325$				
RCE ≤ 0,929	RCE _{trans} = 0,6459 x RCE			

Tipo 13

Clorofila a			
RCE > 0,304	RCE _{trans} = 0,575 x RCE + 0,425		
RCE ≤ 0,304	RCE _{trans} = 1,9714 x RCE		

Biovolumen		
RCE > 0,261	RCE _{trans} = 0,541x RCE + 0,459	
RCE ≤ 0,261	RCE _{trans} = 2,3023 x RCE	

% Cianobacterias			
RCE > 0,931	RCE _{trans} = 5,7971 x RCE - 4,7971		
RCE ≤ 0,931	RCE _{trans} = 0,6445 x RCE		

Índice de Grupos Algales (IGA)				
RCE > 0,979 RCE _{trans} = 18,995 x RCE - 17,995				
RCE ≤ 0,979 RCE _{trans} = 0,6129 x RCE				

Para la combinación de los distintos indicadores representativos del elemento de calidad fitoplancton se hallará la *media* de los RCE transformados correspondientes a los parámetros "abundancia-biomasa" y "composición". La combinación de los RCE transformados se llevará a cabo primero para los indicadores de clorofila y biovolumen, ambos representativos de la <u>abundancia</u>. La combinación se hará mediante las *medias* de los RCE transformados.

Posteriormente se llevará a cabo la combinación de los indicadores representativos de la <u>composición</u>: porcentaje de cianobacterias y el IGA. La combinación se hará mediante las *medias* de los RCE transformados. Finalmente, para la combinación de los indicadores de composición y abundancia-biomasa se hará la *media aritmética*.

El valor final de la combinación de los RCE transformados se clasificará de acuerdo a la siguiente escala de la tabla A10:

Tabla A10. Ratios de calidad según el índice de potencial ecológico normativo RCEtrans.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
RCEtrans	> 0,6	0,4-0,6	0,2-0,4	<0,2
Valoración de cada clase	2	3	4	5

Tabla A11. Valores de referencia propios del tipo (VR_t) y límites de cambio de clase de potencial ecológico (B⁺/M, Bueno o superior-Moderado; M/D, Moderado-Deficiente; D/M, Deficiente-Malo) de los indicadores de los elementos de calidad de embalses (*RD 817/2015*). Se han incluido sólo los tipos de embalses presentes en el ESTUDIO.

Tipo	Elemento	Parámetro	Indicador	VRt	B ⁺ /M (RCE)	M/D (RCE)	D/M (RCE)	
		Biomasa	Clorofila a mg/m ³	2,00	0,211	0,14	0,07	
			Biovolumen mm ³ /L	0,36	0,189	0,126	0,063	
Tipo 1	Fitoplancton		Índice de Catalán (IGA)	0,10	0,974	0,649	0,325	
		Composición	Porcentaje de cianobacterias	0,00	0,908	0,607	0,303	
			Clorofila a mg/m ³	2,60	0,433	0,287	0,143	
		Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12	
Tipo 7	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327	
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24	
		Diamaga	Clorofila a mg/m³	2,60	0,433	0,287	0,143	
		Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12	
Tipo 9	Fitoplancton	n Composición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327	
			Porcentaje de cianobacterias	0,00	0,715	0,48	0,24	
		Biomasa	Clorofila a mg/m³	2,60	0,433	0,287	0,143	
	Fitoplancton		Biovolumen mm ³ /L	0,76	0,362	0,24	0,12	
Tipo 10		Fitoplancton Composición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327	
			Porcentaje de cianobacterias	0,00	0,715	0,48	0,24	
		Biomasa	Clorofila a mg/m³	2,60	0,433	0,287	0,143	
			Biovolumen mm ³ /L	0,76	0,362	0,24	0,12	
Tipo 11	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327	
			Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		D:	Clorofila a mg/m ³	2,40	0,195	0,13	0,065	
		Biomasa	Biovolumen mm ³ /L	0,63	0,175	0,117	0,058	
Tipo 12	Fitoplancton		Índice de Catalán (IGA)	1,50	0,929	0,619	0,31	
		Composición	Porcentaje de cianobacterias	0,10	0,686	0,457	0,229	
		Diamaga	Clorofila a mg/m³	2,10	0,304	0,203	0,101	
	Fitoplancton	Biomasa	Biovolumen mm ³ /L	0,43	0,261	0,174	0,087	
Tipo 13			Índice de Catalán (IGA)	1,10	0,979	0,653	0,326	
		Composición	Porcentaje de cianobacterias	0,00	0,931	0,621	0,31	

2.1.2. INDICADORES DE CALIDAD FISICOQUÍMICOS

Todavía la normativa no ha desarrollado qué indicadores fisicoquímicos se emplean en embalses, pero por similitud con los que se recogen para lagos (Real Decreto 817/2015) se utilizan los siguientes:

1) Transparencia

La transparencia es un elemento válido para evaluar el grado trófico del embalse; tiene alta relación con la productividad biológica; y además tiene rangos establecidos fiables y de utilidad para el establecimiento de los límites de clase del potencial ecológico. Se ha evaluado a través de la profundidad de visión del disco de Secchi (DS), considerando su valor para la obtención de las distintas clases de potencial (tabla A12).

Tabla A12. Clases de potencial ecológico según la profundidad de visión del Disco de Secchi.

Clase de potencial ecológico	Muy Bueno	Bueno	Moderado
Disco de Secchi (DS, m)	> 6	6 - 3	< 3
Valoración de cada clase	1	2	3

2) Condiciones de oxigenación

Representa un parámetro secundario de la respuesta trófica que viene a indicar la capacidad del sistema para asimilar la materia orgánica autóctona, generada por el propio sistema a través de los productores primarios en la capa fótica, y la materia orgánica alóctona, es decir, aquella que procede de fuentes externas al sistema, como la procedente de focos de contaminación puntuales o difusos.

Se ha evaluado estimando la reserva media de oxígeno hipolimnético en el periodo de muestreo, correspondiente al periodo de estratificación. En el caso de embalses no estratificados se consideró la media de oxígeno en toda la columna de agua. Las clases consideradas han sido las correspondientes a la concentración de oxígeno en la columna de agua; parámetro vital para la vida piscícola. En la tabla A13 se resumen los límites establecidos.

Tabla A13. Clases de potencial ecológico según la concentración de oxígeno disuelto en el hipolimnion o en toda la columna de agua, cuando el embalse no está estratificado.

Clase de potencial ecológico	Muy Bueno	Bueno	Moderado
Concentración hipolimnética (mg/L O ₂)	> 8	8 - 6	< 6
Valoración de cada clase	1	2	3

3) Concentración de nutrientes

En este caso se ha seleccionado el fósforo total (PT), ya que su presencia a determinadas concentraciones en un embalse acarrea procesos de eutrofización, pues en la mayoría de los casos es el principal elemento limitante para el crecimiento de las algas.

Se ha empleado el resultado obtenido en la muestra integrada, considerando los criterios de la OCDE especificados en la tabla A14 (OCDE, 1982) adaptado a los intervalos de calidad del RD 817/2015.

Tabla A14. Clases de potencial ecológico según la concentración de fósforo total.

Clase de potencial ecológico	Muy Bueno	Bueno	Moderado
Concentración de PT (μg P/L)	0 - 4	4 -10	> 10
Valoración de cada clase	1	2	3

Si se toman varios datos anuales, se hace la *mediana* de los valores anuales.

Posteriormente se elige el *peor valor* de los tres indicadores (transparencia, condiciones de oxigenación y fósforo total).

4) Sustancias preferentes y contaminantes específicos de cuenca

Dentro de los indicadores fisicoquímicos también se tienen en cuenta las **sustancias preferentes y contaminantes específicos de cuenca.** El valor medio de los datos anuales se revisa para ver si *cumple* o no con la Norma de Calidad Ambiental (NCA) del Anexo V del RD 817/2015. Si incumple supone asignarle para los indicadores fisicoquímicos la categoría de moderado.

Tabla A15. Clases de potencial ecológico para sustancias preferentes y contaminantes específicos de cuenca.

Clase de potencial ecológico	Muy Bueno	Moderado
Sustancias preferentes y contaminantes específicos de cuenca	Cumple NCA	No cumple NCA
Valoración de cada clase	2	3

El <u>potencial ecológico</u> resulta del *peor valor* entre los indicadores biológicos y fisicoquímicos.

Tabla A16. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico
Bueno o superior	Muy bueno	Bueno o superior
Bueno o superior	Bueno	Bueno o superior
Bueno o superior	Moderado	Moderado
Moderado		Moderado
Deficiente	Indistinto	Deficiente
Malo		Malo

2.2. ESTADO QUÍMICO

El <u>estado químico</u> es "no bueno" cuando hay algún incumplimiento de la Norma de Calidad Ambiental, bien sea como media anual (NCA_MA), como máximo admisible (NCA_CMA) o en la biota (NCA_biota) para las **sustancias prioritarias y otros contaminantes**. Las NCA se recogen en el *Anexo IV del RD 817/2015*.

Tabla A17. Clases de estado químico para sustancias prioritarias y otros contaminantes.

Clase de estado químico	Bueno	No alcanza el buen estado
Sustancias prioritarias y otros contaminantes	Cumple NCA	No cumple NCA
Valoración de cada clase	2	3

2.3. ESTADO

El <u>estado</u> de la masa de agua es el *peor valor* entre su potencial ecológico y su estado químico.

Tabla A18. Determinación del estado.

Estado	Estado Químico				
Potencial Ecológico	Bueno No alcanza el buen esta				
Bueno o superior	Bueno				
Moderado		Inferior a bueno			
Deficiente	Inferior a bueno				
Malo					

DIAGNÓSTICO DEL ESTADO TRÓFICO DEL EMBALSE DE GALLIPUÉN

Se han considerado los indicadores especificados en la tabla A19 para los valores medidos en el embalse, estableciéndose el estado trófico global del embalse según la metodología descrita.

Tabla A19. Parámetros indicadores y rangos de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración P (µg P /L)	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cél./ml)	<100	100-1000	1000-10000	10000-100000	>100000
VALOR PROMEDIO	< 1,8	1,8 - 2,6	2,6 - 3,4	3,4 - 4,2	> 4,2

En la tabla A20 se incluye el estado trófico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según la valoración de este estado trófico final para cada campaña de muestreo.

Tabla A20. Diagnóstico del estado trófico del embalse de Gallipuén.

INDICADOR	VALOR	ESTADO TRÓFICO
CONCENTRACIÓN P TOTAL	45,90	Eutrófico
DISCO SECCHI	1,50	Eutrófico
CLOROFILA a	13,57	Eutrófico
DENSIDAD ALGAL	495185	Hipereutrófico
ESTADO TRÓFICO FINAL	4,25	HIPEREUTRÓFICO

Atendiendo a los criterios seleccionados, la concentración de P total ha clasificado el embalse como eutrófico; la transparencia como eutrófico; la concentración de clorofila a como eutrófico y la densidad algal como hipereutrófico. Combinando todos los indicadores, el estado trófico final para el embalse de Gallipuén ha resultado ser **HIPEREUTRÓFICO**.

DIAGNÓSTICO DEL ESTADO FINAL DEL EMBALSE DE GALLIPUÉN

En la mayoría de los casos en lugar del estado de la masa, sólo se puede establecer el potencial ecológico (además sin tener en cuenta la presencia de sustancias preferentes y contaminantes específicos de cuenca, para los indicadores fisicoquímicos). Tampoco se han estudiado las sustancias prioritarias y otros contaminantes que permitan determinar el estado químico, por eso se diagnostica la masa con el **potencial ecológico**.

Se han considerado los indicadores, los valores de referencia y los límites de clase B+/M (Bueno o superior/Moderado), M/D (Moderado/Deficiente) y D/M (Deficiente/Malo), así como sus ratios de calidad ecológica (RCE), especificados en las tablas A21 y A22.

Tabla A21. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo.

			RANGOS DEL RCE				
Indicador	Elementos	Parámetros	Bueno o superior		Moderado	Deficiente	Malo
		Clorofila a (µg/L)	≥ 0,433		0,432 – 0,287	0,286 – 0,143	< 0,143
Biológico	Fitoplancton	Biovolumen algal (mm³/L)	≥ 0,362		≥ 0,362 0,361 – 0,24		< 0,12
		Índice de Catalán (IGA)	≥ 0,982		0,981 – 0,655	0,654 – 0,327	< 0,327
		Porcentaje de cianobacterias	≥ 0,715		0,714 – 0,48		< 0,24
	Bueno o superior		Moderado	Deficiente	Malo		
INDICADOR BIOLÓGICO			> 0,6		0,4 - 0,6	0,2 - 0,4	< 0,2
				R/	ANGOS DE VAL	ORES	<u> </u>
Indicador	Elementos	Parámetros	Muy bueno	Bueno	Moderado	Deficiente	Malo
	Transparencia	Disco de Secchi (m)	> 6	3 - 6	1,5 - 3	0,7 - 1,5	< 0,7
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	> 8	8 - 6	6 - 4	4 - 2	< 2
	Nutrientes	Concentración de PT (µg P/L)	0 - 4	4 - 10	10 - 35	35 - 100	> 100
			Muy bueno	Bueno		Moderado	
INDIC	INDICADOR FISICOQUÍMICO			1,6 – 2,4		> 2,4	

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico normativo sigue el esquema de decisiones indicado en la tabla A22.

Tabla A22. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico (PE)
Bueno o superior	Muy bueno	Bueno o superior
Bueno o superior	Bueno	Bueno o superior
Bueno o superior	Moderado	Moderado
Moderado		Moderado
Deficiente	Indistinto	Deficiente
Malo		Malo

En la tabla A23 se incluye el potencial indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según el potencial ecológico, tras pasar el filtro del indicador fisicoquímico.

Tabla A23. Diagnóstico del potencial ecológico del embalse de Gallipuén.

Indicador	Elemento	s Parámetro	Indicador	Valor	RCE	RCET	PE
		Biomasa	Clorofila a (µg/L)	13,57	0,19	0,27	Deficiente
Biológico	Fitoplancto	Biovolumen	Biovolumen algal (mm³/L)	1,09	0,69	0,81	Bueno o Superior
INDICADOR BIOLÓGICO					2		BUENO O SUPERIOR
Indicador Elementos Indicador			Indicador	Valor			PE
		Transparencia	Disco de Secchi (m)	1,50		Moderado	
Fisicoquímico		Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	6,00 45,90		Moderado	
		Nutrientes	Concentración de PT (µg P/L)			Moderado	
INDICADOR FISICOQUÍMICO				3 MODERADO			
POTENCIAL ECOLÓGICO				MODERADO			00
ESTADO FINAL			INFERIOR A BUENO				

De acuerdo con los resultados obtenidos, el Estado Final del embalse de Gallipuén para el año 2006 es de nivel 3, **INFERIOR A BUENO**.