

EJECUCIÓN DE TRABAJOS RELACIONADOS CON LOS REQUISITOS DE LA DIRECTIVA **MARCO** (2000/60/CE) EN EL ÁMBITO DE LA CONFEDERACIÓN HIDROGRÁFICA DEL **EBRO REFERIDOS ELABORACIÓN** DEL **REGISTRO ZONAS** DE PROTEGIDAS, DETERMINACIÓN DEL POTENCIAL ECOLÓGICO DE LOS EMBALSES, DESARROLLO DE PROGRAMAS ESPECÍFICOS DE INVESTIGACIÓN

EMBALSE DE RIBARROJA

ÍNDICE

	Página
1. INTRODUCCIÓN	1
2. DESCRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE	1
2.1. Ámbito geográfico	1
2.2. Características morfométricas e hidrológicas	2
2.3. Usos del agua	4
2.4. Registro de zonas protegidas	4
3. DESCRIPCIÓN DE LOS TRABAJOS REALIZADOS	5
4. DIAGNÓSTICO DE LA SITUACIÓN ACTUAL	7
4.1. Características físico-químicas de las aguas	7
4.2. Hidroquímica del embalse	9
4.3. Productores primarios y concentración de pigmentos fotosintetizadores	11
4.3.1. Cualidad bioindicadora	14
5. DIAGNÓSTICO DEL GRADO TRÓFICO	14
6. DEFINICIÓN DEL POTENCIAL ECOLÓGICO	15
ANEXO I. RESULTADOS FÍSICO QUÍMICOS	
ANEXO II. RESULTADOS QUÍMICOS	
ANEXO III. RESULTADOS BIOLÓGICOS	
REPORTAJE FOTOGRÁFICO	
APÉNDICE 1. FICHA DESCRIPTIVA DEL EMBALSE	

1. INTRODUCCIÓN

El presente documento recoge los resultados de los trabajos realizados en el embalse de Ribarroja y la interpretación de los mismos, con una disposición temática similar para los 47 embalses estudiados, a efectos de proporcionar una referencia fija que facilite la consulta y explotación de la información contenida en ellos.

En general, se recurre a presentaciones gráficas y sintéticas de la información, acompañadas de un texto conciso, lo que permitirá una ágil y rápida consulta del documento. Los listados de datos analíticos se adjuntan en tres anexos que completan el presente documento. Por último, tras los anexos, se expone un reportaje fotográfico que refleja el estado del embalse durante el periodo estudiado (años 2004-2005).

En apartados sucesivos se comentan los siguientes aspectos:

- Resultados del estudio en el embalse (FASE DE CARACTERIZACIÓN) de todos los aspectos tratados (hidráulicos, físico-químicos y biológicos), que culminan en el diagnóstico del grado trófico.
- Definición del "Potencial Ecológico", tras la aplicación de indicadores biológicos y físico-químicos propuestos en la Directiva Marco de Aguas.

2. DESCRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE

2.1. Ámbito geográfico

El embalse de Ribarroja se sitúa en la Depresión Terciaria del Ebro, extendiéndose al Sur hasta la rama aragonesa de la Cordillera Ibérica. De las unidades geológicas presentes en la cuenca vertiente, el embalse se ubica en los depósitos terciarios de la Depresión del Ebro.

El embalse, situado inmediatamente aguas abajo de Mequinenza, regula el tramo bajo del río Ebro. La presa, terminada en 1969, se sitúa en la localidad de Ribarroja d'Ebre,

provincia de Tarragona. Además, recibe aportaciones de los ríos Segre y Matarraña, así como las de distintos arroyos de menor entidad.

2.2. Características morfométricas e hidrológicas

Es un embalse de grandes dimensiones, alargado y que presenta dos significativos brazos; el primero, formado por el río Segre, se sitúa en la zona de cola y por la margen izquierda, mientras que el segundo, próximo a la cabecera y por margen la derecha, lo conforma el río Matarraña.

La cuenca vertiente al embalse de Ribarroja tiene una superficie total de 8 082 300 ha.

El embalse tiene una extensión de 2 152 ha en su máximo nivel normal y una capacidad total de 207 hm³. Tiene una profundidad media de 9,8 m, mientras que la profundidad máxima alcanza los 34 m. En el cuadro I se presentan las características morfométricas del embalse y de las subcuencas.

Cuadro I: Características morfométricas del embalse y subcuencas

Superficie de la cuenca total (ha)	8 082 300
Superficie de la cuenca parcial (ha)	-
Superficie de la subcuenca de escorrentía (ha)	-
Superficie del embalse (ha)	2 152
Longitud máxima del embalse (km)	35
Capacidad total (hm³)	207
Capacidad útil (hm³)	-
Profundidad máxima (m)	34
Profundidad media (m)	9,8
Perímetro en máximo nivel (km)	98
Cota máximo nivel embalsado (msnm)	70
Cota(s) de la toma(s) de agua principal(es) (msnm)	40; 41,4; 43,3; 59,5

Se trata de un embalse monomíctico¹, típico de zonas templadas. La termoclina en el periodo estival se sitúa entre 14 y 16 metros de profundidad. Por su parte, la capa fótica en el estío oscila entre 2 y 4 metros de espesor.

En el **cuadro II** se presentan las medias mensuales de la explotación hidráulica correspondiente al periodo 2001-2005.

Cuadro II: Parámetros hidráulicos mensuales. Periodo 2001-2005

	BALANCE HIDRÁULICO MENSUAL										
Periodo	Volumen	Salidas totales	Entradas Totales	Ts	Te						
2001-2005	Hm³	Hm³	Hm ³	años	años						
Octubre	200,83	367,00	364,15	0,046	0,047						
Noviembre	201,75	452,55	456,25	0,037	0,036						
Diciembre	201,01	856,15	856,20	0,020	0,020						
Enero	203,76	877,58	879,53	0,020	0,020						
Febrero	202,13	1.210,33	1.208,58	0,013	0,013						
Marzo	200,11	1.327,65	1.327,65	0,013	0,013						
Abril	201,70	936,78	935,40	0,018	0,018						
Mayo	197,96	1.061,63	1.055,88	0,016	0,016						
Junio	200,54	464,45	470,78	0,035	0,035						
Julio	200,94	381,48	380,45	0,045	0,045						
Agosto	200,98	378,58	381,45	0,045	0,045						
Septiembre	202,35	396,53	396,85	0,042	0,042						
Total anual	201,17	8.710,68	8.713,15	0,023	0,023						

El tiempo de residencia anual del agua es muy bajo, de aproximadamente 8 días. Los mínimos, 5 días, se obtienen los meses de febrero y marzo, considerando tanto las entradas como las salidas. Los máximos se dan en el mes de octubre, alcanzándose 17 días de residencia.

_

Significa que presenta un único ciclo anual de mezcla-estratificación vertical.

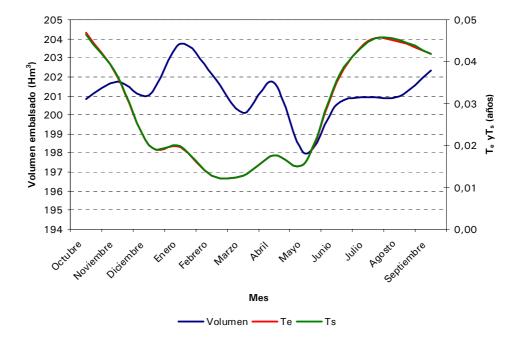


Figura 1: Volumen embalsado y tiempo de retención del agua

2.3. Usos del agua

Las aguas del embalse se destinan principalmente a la producción hidroeléctrica, también abastece de agua potable a la población de Ribarroja, entre otras. Dentro de los usos recreativos que se dan en el embalse destacan la pesca y la navegación.

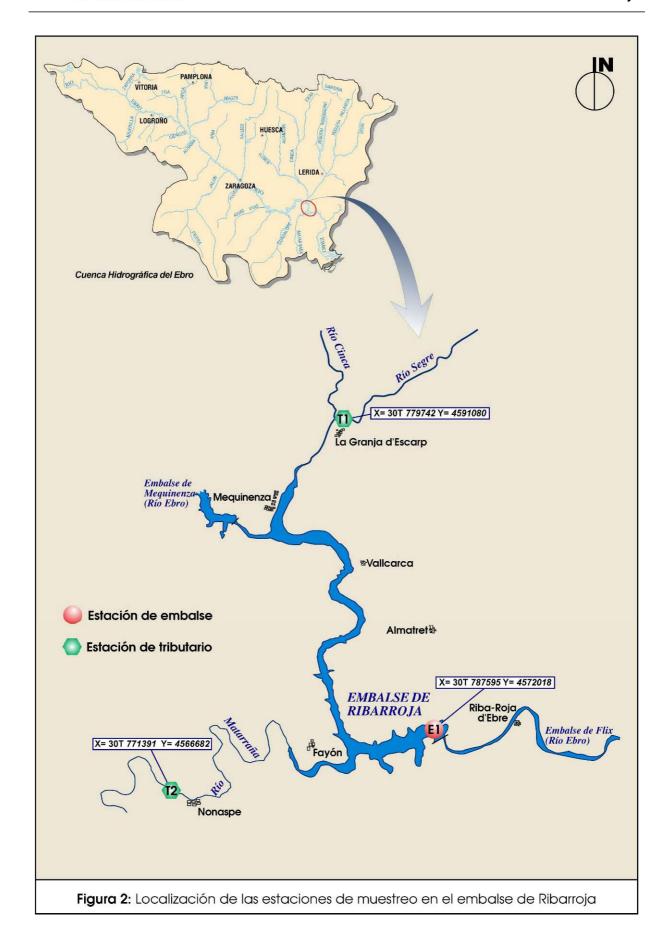
2.4. Registro de zonas protegidas

El embalse de Ribarroja forma parte del Registro de Zonas Protegidas elaborado por la Confederación Hidrográfica del Ebro, en contestación al artículo 6 de la Directiva Marco del Agua, dentro de las siguientes categorías:

Zonas de extracción para consumo humano: En el embalse se sitúan cuatro captaciones de extracción para consumo humano. Los titulares de las captaciones son: Mancomunidad PO. VI. BA -3 208 habitantes-, Mancomunidad Nonaspe-Fabara, titular de 2 captaciones, -5 326 habitantes- y el Ayuntamiento de Almatret -468 habitantes-. En definitiva, el total de población abastecida con éstas captaciones es de 9 002 habitantes.

• Zonas de protección de hábitats o especies: La zona de cabecera del embalse está incluida en el LIC ES5140012 "Tossals d'Almatret i Riba Roja" y, prácticamente la totalidad del embalse, forma parte de la ZEPA ES0000298 "Matarraña Aiguabarreix". Cabe citar que el tramo bajo del Cinca conserva una importante colonia de ardéidas y un importante núcleo de invernada de Cormorán grande (Phalacrocorax carbo). Conserva también buenas poblaciones de rapaces rupícolas, destacando una densidad relevante, la mayor de Aragón, de Águila perdicera (Hieraaetus fasciatus) y un núcleo, en aumento, de Buitre común (Gyps fulvus). En relación a los mamíferos asociados a hábitats acuáticos destaca la presencia de Nutria (Lutra lutra).

3. DESCRIPCIÓN DE LOS TRABAJOS REALIZADOS

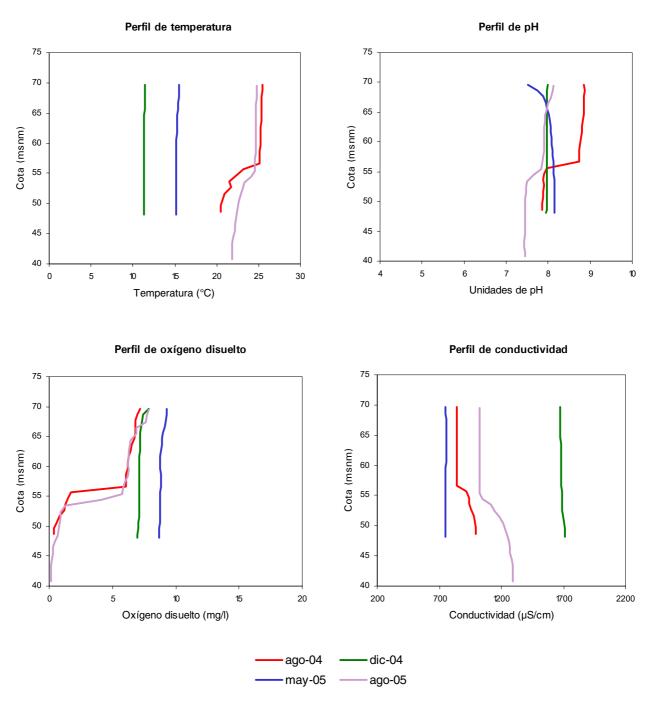

Para acometer la caracterización del embalse se han ubicado tres estaciones de muestreo, una en las inmediaciones de la presa (E1) y dos más en tributarios, la primera en el río Segre (T1), en la localidad de La Granja d'Escarp, y la segunda en el río Matarraña (T2), situadas aguas arriba de Nonaspe (ver Figura 2). Una descripción detallada de los trabajos realizados en el marco del Estudio se presenta en el apartado 4.1. de la MEMORIA DEL ESTUDIO.

En total se han realizado 4 campañas de muestreo en el embalse, distribuidas a lo largo de los años 2004 y 2005. En el **cuadro III** se presentan las fechas de los muestreos y si en esa fecha hay estratificación térmica en el embalse.

Cuadro III: Campañas y fechas de muestreo

1ª Campaña	21/08/2004	Estratificación
2ª Campaña	15/12/2004	Mezcla
3ª Campaña	06/05/2005	Mezcla
4ª Campaña	19/08/2005	Estratificación

4. DIAGNÓSTICO DE LA SITUACIÓN ACTUAL


4.1. Características físico-químicas de las aguas

Los resultados físico-químicos de cada una de las campañas de muestreo se presentan en el **Anexo I**. Del comportamiento observado se desprenden las siguientes apreciaciones:

- La temperatura del agua es moderada, oscilando entre los 11,4 °C -mínimo- y los 25,4 °C, -máximo registrado en el estío-. En el periodo estival la columna de agua se encuentra estratificada, localizándose el gradiente térmico a 14 m en verano de 2004 y a 16 m en verano de 2005.
- El pH del agua es ligeramente básico, con un valor medio anual de 8,02 ud. El máximo epilimnético estival es de 8,87 ud y el mínimo, registrado en las capas más profundas, de 7,43 ud.
- La transparencia del agua es baja, con un registro medio anual en la lectura de disco de Secchi de 2,1 m, lo que supone una profundidad de la capa fótica en torno a 4 metros. El mínimo (1,4 m) se registra en verano de 2004, mientras que el máximo (2,5 m) se registra en invierno.
- Las condiciones de oxigenación de la columna de agua son buenas durante la época de mezcla (invierno-primavera), donde la columna de agua presenta concentraciones de oxígeno entre 6,95 y 9,30 mg/ O₂. Situación que empeora ostensiblemente en el periodo de estratificación, donde se localiza una acusada oxiclina, coincidente con la posición de la termoclina. En verano de 2004 los últimos cuatro metros de profundidad presentan condiciones anóxicas (<1 mg/l O₂), incrementándose hasta 13 m en verano de 2005, lo que supone que el 43% de la columna de agua se encontraba en condiciones deficitarias de oxígeno.
- La conductividad de las aguas es alta, situándose la media anual en 1 116 μS/cm.
 Los resultados obtenidos se encuentran dentro de los valores históricos de este ámbito.

Figura 3: Perfiles físico-químicos del embalse

4.2. Hidroquímica del embalse

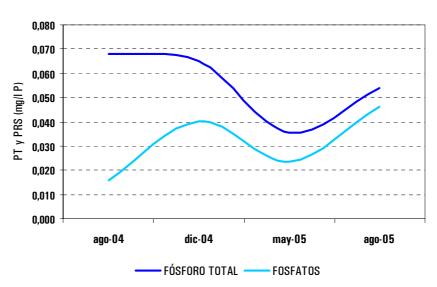
De los resultados analíticos obtenidos a lo largo del periodo 2004-2005, y que se presentan en el **Anexo II**, se desprenden las siguientes conclusiones:

 Las concentraciones de nutrientes son altas y se encuentran dentro de los rangos conocidos para el embalse.

La concentración media de fósforo total para el periodo estudiado, y toda la columna de agua, adquiere un valor de 0,056 mg/l P. El valor máximo se sitúa en verano de 2004 -0,068 mg/l P- mientras que el mínimo -0,036 mg/l P- se da en primavera. Los ortofosfatos mantienen una pauta similar, oscilando sus concentraciones entre 0,016 mg/l P y 0,046 mg/l P máximo en verano de 2005.

De los compuestos nitrogenados destacan las concentraciones de nitritos que superan el umbral establecido para vida piscícola de tipo ciprinícolas (\leq 0,03 mg NO₂/I). Entre las formas inorgánicas la dominante es la de nitratos (NO₃/NIT = 92%), siendo las proporciones de amonio y nitritos bajas (NH₄/NIT = 5%; NO₂/NIT = 3%). El NIT presenta su valor máximo -2,88 mg/l N- en invierno y el mínimo -1,80 mg/l N- en verano de 2005.

Las concentraciones de nutrientes en los tributarios son altas, siendo el río Segre (T1) el que presenta una mayor concentración de nutrientes. El valor medio anual obtenido en el río Segre para el fósforo total ha sido de 0,130 mg/l P. Cabe citar que, en el río Matarraña, tan sólo se pudo tomar una muestra (campaña de invierno), ya que en el resto de campañas el cauce se encontraba seco. La concentración de fósforo total obtenida en invierno para el Matarraña (0,022 mg/l P) resultó ostensiblemente más baja que la detectada en el río Segre en la misma campaña de muestreo (0,143 mg/l P).


 El contenido de materia orgánica obtenido, tanto en el embalse como en el tributario, es bajo y no presenta variaciones interanuales destacables. Los valores medios obtenidos en el embalse han sido de 2,0 y 11,3 mg O₂/I, para la DBO₅ y DQO, respectivamente.

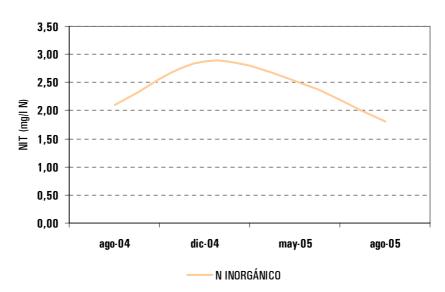

 Las aguas embalsadas se encuentran altamente mineralizadas y la concentración de calcio (77,7 mg Ca/l) se sitúa en el rango habitual en el embalse.

Figura 4: Evolución temporal de la concentración de nutrientes

Valores medios de Nitrógeno Inorgánico Total Embalse de Ribarroja

4.3. Productores primarios y concentración de pigmentos fotosintetizadores

Los resultados de los análisis cuantitativos de fitoplancton se presentan en el **Anexo III**. De los resultados obtenidos se desprenden las siguientes apreciaciones:

De la totalidad de 4 análisis realizados, se han identificado un total de 96 especies, distribuidas entre los siguientes grupos taxonómicos:

- 20 diatomeas
- 6 cianobacterias
- 50 clorofíceas
- 8 criptofíceas
- 2 crisofíceas
- 4 dinofíceas
- 6 zigofíceas

El siguiente gráfico recoge los cambios estacionales -climatológicos- de las comunidades fitoplanctónicas del embalse a lo largo del año hidrológico estudiado -2004-2005-. Las 7 especies representadas en el gráfico son consideradas las más representativas de este sistema léntico, atendiendo a la densidad algal -cel/ml- que se ha obtenido en una determinada estación climatológica.

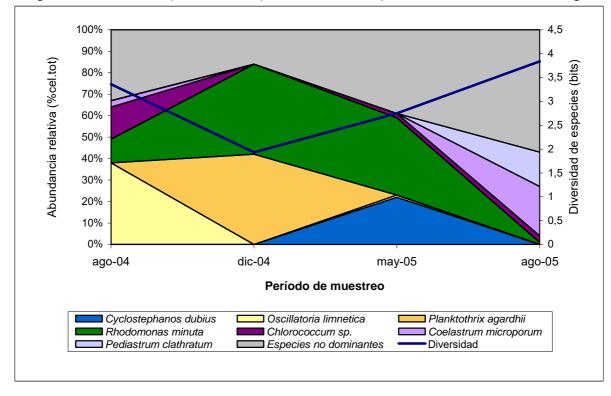


Figura 5: Evolución temporal de las especies dominantes y diversidad de la comunidad algal

La composición y estructura poblacional han mantenido las siguientes pautas temporales:

En el primer período estival, la comunidad algal presenta valores de densidad celular elevados -6 898 cel/ml-. La comunidad en esta estación está compuesta mayoritariamente por dos grupos de algas: las cianobacterias y las clorofíceas. Dentro de estos grupos destacan por su abundancia, la cianobacteria *Oscillatoria limnetica* y la clorofícea *Chlorococcum sp*.

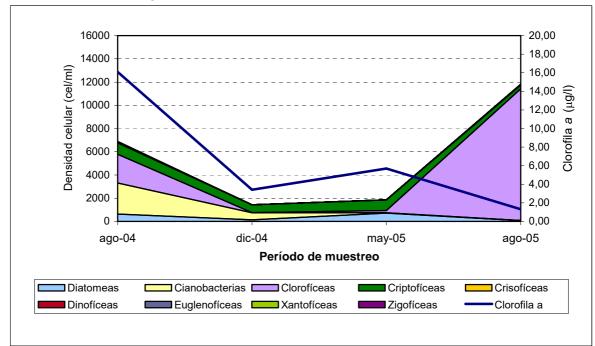
En invierno de 2004 las poblaciones de todos los grupos de algas decrecen y se registra el mínimo valor de densidad fitoplanctónica –1 430 cel/ml-. Se observa la fuerte dominancia de dos especies, la cianobacteria *Planktothrix agardhii* y la criptofícea *Rhodomonas minuta*. Ambas especies representan el 84% de la comunidad. Esta situación reduce el valor del índice de diversidad de Shannon-Weaber al mínimo registrado durante el periodo de estudio -1,93 bits-.

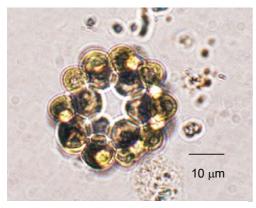
Durante la primavera, la densidad algal se incrementa ligeramente -1 858 cel/ml-. Los grupos con mayor peso cambian y dominan las diatomeas y criptofíceas. La criptofícea

Rhodomonas minuta, frecuente en medios mezclados y moderadamente fríos, domina junto con la diatomea Cyclostephanos dubius.

En el periodo estival de 2005 la densidad fitoplanctónica aumenta registrándose el valor más alto del año hidrológico estudiado -11 826 cel/ml-. Las clorofíceas son el grupo mejor representado tanto en el número de especies -37 especies- como en el porcentaje de células contabilizadas -96% de la población-. Dentro de este grupo las especies más abundantes son *Coelastrum microporum*, *Pediastrum clatrhatum* y *Crucigenia quadrata*. En este periodo se han identificado un elevado número de especies -59 especies- y ninguna de ellas tiene una fuerte dominancia sobre el resto lo cual determina el registro del máximo valor del índice de diversidad de Shannon-Weaber -3,84 bits-.

La evolución temporal de la densidad algal, segregada por clases taxonómicas y la biomasa expresada en concentración de clorofila *a*, se representa en el siguiente gráfico:




Figura 6: Evolución temporal por clases taxonómicas

La correspondencia entre el valor de la biomasa, expresado como μ g/l de clorofila a, y el valor de densidad fitoplanctónica - ml/l - es buena exceptuando el periodo estival de 2005 donde se registra la máxima densidad fitoplanctónica -11 826 cel/ml- y el valor más bajo de biomasa -1,30 μ g/l-.

4.3.1. Cualidad bioindicadora

Los valores de densidad algal media -5 503 cel/ml-, de biomasa media -6,63 μ g/l- y la sucesión de especies a lo largo del año de estudio indican que el embalse de Ribarroja es un medio eutrófico. Las asociaciones algales identificadas en el embalse se describen a continuación:

Coelastrum microporum

El estío de 2004 la asociación algal presente está formada por la cianobacteria *Oscillatoria limnetica* y la clorofícea *Chlorococcum sp.* La mayor abundancia relativa de la cianobacteria caracteriza un medio rico en nutrientes. Durante el invierno las especies más representativas por su abundancia son la cianobacteria *Planktothrix agardhii* y la criptofícea *Rhodomonas minuta*. La presencia de esta cianobacteria en el periodo invernal se debe a

la capacidad de controlar su flotación, localizándose en la profundidad más ventajosa. En primavera, la asociación algal formada por *Rhodomonas minuta* y la diatomea *Cyclostephanos dubius*, describe un medio mesotrófico. Por último en el periodo estival de 2005, se observa el fuerte crecimiento de las clorofícea -mayoritariamente *Coelastrum microporum*, *Pediastrum clathratum* y *Crucigenia quadrata*- que informan de un medio eutrófico.

5. DIAGNÓSTICO DEL GRADO TRÓFICO

En función de la variedad de índices que se plasma en el cuadro IV, se puede catalogar al embalse de Ribarroja, como eutrófico.

Atendiendo a criterios de la OCDE tanto parámetro causal básico (PT) como el de transparencia definen al embalse como eutrófico. El mínimo rango, mesotrofia, se obtiene con la clorofila a.

Cabe citar que los resultados obtenidos según el índice TSI (Carlson,1974), estimados a partir del la clorofila a y de la profundidad del disco de Secchi, definen al embalse como mesotrófico, mientras que el fósforo total lo sitúa en rangos eutróficos.

Cuadro IV Catalogación del grado trófico del embalse según los diferentes índices

Índice	Definición criterio	Rango	Perio	do 2.004-2.005
			Valor	Grado Trófico
EPA (1976)	PT (ug/l); media anual	<10-MESO-20>	56	<i>EUTRÓFICO</i>
EPA (Weber, 1976)	N° células algales/ml	< 2000-MESO-15000 >	5.503	<i>MESOTRÓFICO</i>
EPA (Weber, 1976)	Clorofila (ug/l); máx. fót.	< 3-MESO-20 >	16,1	<i>MESOTRÓFICO</i>
Lee, Jones & Rast (1978)	Clorofila (ug/l);media anual	< 2,1-3-6,7-10>	6,6	MESOTRÓFICO
Lee, Jones & Rast (1978)	PT (ug/l); media anual	< 8- 12 - 28 -40 >	56	<i>EUTRÓFICO</i>
Lee, Jones & Rast (1978)	SDT (m); media anual	<1,8-2,4-3,8-4,6>	2,1	MESO-EUTRÓF.
Margalef (1983)	N° células algales/ml	5000 (lím. eut.avanmod.)	5.503	E. AVANZADA
Margalef (1983)	Clorofila (ug/l); anual fót.	5 (lím. eut.avanmod.)	6,6	E. AVANZADA
Margalef (1983)	PT (ug/l); media anual	15 (lím. eut.avanmod.)	56	E. AVANZADA
Margalef (1983)	NO₃-N (ug/l); media anual	140 (lím. eut.avanmod.)	2.138	E. AVANZADA
Margalef (1983)	SDT (m); media anual	3 (lím. eut.avanmod.)	2,1	E. AVANZADA
OCDE (1980)	Clorofila (ug/l); anual fót.	<1; < 2.5; 2.5-8; 8-25; > 25	6,6	<i>MESOTRÓFICO</i>
OCDE (1980)	Clorofila (ug/l); máx. anual	< 2.5; < 8;8-25;25-75; > 75	16,1	MESOTRÓFICO
OCDE (1980)	PT (ug/l); media anual	Uol. < 4·10·35·100 > Heu.	56	<i>EUTRÓFICO</i>
OCDE (1980)	SDT (m); media anual	> 12; > 6;;6-3;3-1.5; < 1.5	2,1	<i>EUTRÓFICO</i>
OCDE (1980)	SDT (m); mínimo anual	> 6; > 3;3-1.5;1.5-0.7; < 0.7	1,4	<i>EUTRÓFICO</i>
TSI (Carlson, 1974): DST	TSI = 10(6-log2(DST))	Uol. < 20-40-60-80 > Heu.	49	MESOTRÓFICO
TSI (Carlson, 1974): CLA	10(6-log2 7,7(1/Cla^0,68))	Uol. < 20-40-60-80 > Heu.	49	MESOTRÓFICO
TSI (Carlson, 1974): PT	TSI = 10(6-log2(54,9/PT))	Uol. < 20-40-60-80 > Heu.	60	<i>EUTRÓFICO</i>

6. DEFINICIÓN DEL POTENCIAL ECOLÓGICO

En el apartado 6.1. de la MEMORIA DEL ESTUDIO - **ESTABLECIMIENTO DEL POTENCIAL ECOLÓGICO**- se describe la metodología empleada para clasificar el potencial ecológico.

Debido a que a los embalses pertenecientes al Grupo 13 TG, Ribarroja y Mequinenza, no se les asigna un embalse de referencia (ya que se considera que el principal objetivo para ellos sería situarse en rangos mesotróficos) y que, por lo tanto, no se valora el ratio de calidad ecológica (EQR), al embalse de Ribarroja no se le designa ninguna categoría de potencial ecológico.

EMBALSE DE RI	MBALSE DE RIBARROJA			CLASES DEL POTENCIAL ECOLÓGICO								
Indicadores	Elementos	Parámetros	Óptimo	Bueno	Moderado	Deficiente	Malo	Valor obs.	Valoración del parámetro	Valoración del indicador	IPE	EQR
	Densidad algal, media anual (cel/ml)	< 5000	5000-15000	15000-25000	25000-50000	>50000	5.503	4				
	Biomasa algal, Cla a (µg/l); anual capa fótica	0-1	1-2,5	2,5-8	8,0-25	> 25	6,6	3	3,0	3,0		
	Cianofíceas tóxicas; máx anual (cel/ml)	0-500	500-2000	2000-20000	20000-100000	> 10 ⁵	7	5				
Físico-Químicos	Transparencia	Disco de Secchi; media anual (m)	>12	12-6	6-3	3-1,5	< 1,5	2,1	2		2,3	-
	Condiciones de oxigenación	Concentración hipolimnética media anual (mg/l O ₂)	>8	8-6	6-4	4-2	<2	5,8	3	2,3		
	Concentración de nutrientes	Concentración de PT: media anual (µg/l P)	0-4	4-10	10-35	35-100	>100	55,7	2			
				VALORACIÓN DE CADA CLASE				•				
			1	2	3	4	5					

ANEXO I. RESULTADOS FÍSICO QUÍMICOS

CAMPAÑA: **EMBALSE:** RIBARROJA (RB) 1 COT. MAX: NIVEL: 70 69,66 Estación: E1 Profundidad: 21 21/08/2004 Fecha: Hora: 17:36 Disco Secchi (m): 1,4 Capa fótica (m): 2,4

Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S.
<u> </u>	msnm	°C	unid	mg/l	% sat.	μS/cm	mV	mg/l
0	70	25,43	8,86	7,17	87,7	839	188	545
1	69	25,42	8,87	6,98	86,1	839	208	545
2	68	25,39	8,85	6,84	83,4	840	228	546
3	67	25,39	8,85	6,84	83,5	840	228	546
4	66	25,38	8,85	6,83	82,9	839	234	545
5	65	25,38	8,84	6,71	82,3	840	244	546
6	64	25,34	8,82	6,50	79,0	840	249	546
7	63	25,29	8,81	6,46	80,0	840	254	546
8	62	25,25	8,80	6,32	76,8	840	260	546
9	61	25,23	8,78	6,25	76,4	840	263	546
10	60	25,21	8,77	6,25	76,2	841	267	547
11	59	25,16	8,73	6,06	75,2	841	270	547
12	58	25,16	8,73	6,03	73,4	841	274	547
13	57	25,15	8,73	6,06	73,8	842	277	547
14	56	23,16	7,96	1,69	19,1	914	248	594
15	55	22,26	7,91	1,52	17,7	938	250	610
16	54	21,50	7,89	1,30	14,9	943	252	613
17	53	21,75	7,90	1,21	13,9	957	255	622
18	52	20,96	7,88	0,81	9,1	978	258	636
19	51	20,71	7,87	0,60	6,7	986	259	641
20	50	20,51	7,86	0,41	4,5	991	261	644
21	49	20,47	7,86	0,39	4,3	992	262	645

TRIBUTARIO: Se		Segre	CAMPAÍ	ŇA:	1_			
Estación: Fecha:		RBT1 21/08/2004		Cod. Est Hora:	.:	RB1T1 15:09		
Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S.
m.	msnm	°C	unid	mg/l	% sat.	μ S/cm	mV	mg/l
1	-	23,43	8,91	6,12	70,70	668	202	434

EMBALSE:	/IBALSE:		JA (RB)		CAMPAÑA:		2	
COT. MAX:			70		NIVEL:		69,62	
Estación: Fecha:			E1 15/12/2004		Profundidad Hora:	:	21,5 16:45	
Disco Secchi	(m):	2,5			Capa fótica	4,3		
Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S.
m.	msnm	°C	unid	mg/l	% sat.	μS/cm	mV	mg/
0	70	11,40	8,00	7,87	72,4	1.672	284	1087
1	69	11,39	7,98	7,44	78,7	1.673	283	1087
2	68	11,39	7,98	7,31	67,3	1.674	283	1088
3	67	11,39	7,98	7,26	66,8	1.674	284	1088
4	66	11,38	7,98	7,22	66,4	1.676	284	1089
5	65	11,37	7,98	7,20	66,2	1.677	284	1090
6	64	11,37	7,98	7,18	66,0	1.678	284	1091
7	63	11,37	7,98	7,17	65,9	1.679	284	1091
8	62	11,37	7,98	7,15	65,7	1.680	285	1092
9	61	11,36	7,97	7,14	65,6	1.682	284	1093
10	60	11,36	7,98	7,15	65,7	1.683	285	1094
11	59	11,36	7,97	7,13	65,5	1.683	285	1094
12	58	11,36	7,98	7,13	65,6	1.684	285	1095
13	57	11,36	7,97	7,13	65,5	1.683	285	1094
14	56	11,36	7,97	7,13	65,5	1.686	285	1096
15	55	11,36	7,97	7,11	65,4	1.687	285	1097
16	54	11,35	7,97	7,10	65,3	1.688	285	1097
17	53	11,36	7,97	7,09	65,2	1.691	285	1099
18	52	11,36	7,97	7,08	65,1	1.693	285	1100
19	51	11,37	7,96	7,04	64,8	1.703	285	1107
20	50	11,36	7,96	7,03	64,6	1.709	285	1111
21	49	11,35	7,96	7,00	64,3	1.709	285	1111
22	48	11,35	7,95	6,95	64,1	1.709	268	1111

TRIBUTARIO:		Segre	CAMPAI	ÑA:	2			
Estación: Fecha:		RBT1 15/12/2004		Cod. Est Hora:	:.:	RB2T1 14:45		
Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S.
m.	msnm	°C	unid	mg/l	% sat.	μS/cm	mV	mg/l
1	-	10,39	8,19	9,77	87,60	688	303	447

TRIBUTA	TRIBUTARIO: Matarraña			CAMPAÑ	A:	2		
Estación: Fecha:		RBT2 15/12/2004		Cod. Est. Hora:	:	RB2T2 16:00		
Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S.
m.	msnm	°C	unid	mg/l	% sat.	μS/cm	mV	mg/l
1	_	9,56	8,40	10,04	88,20	567	284	369

EMBALSE:		RIBARRO)JA (RB)		CAMPAÑA	:	3	
COT. MAX:			70		NIVEL:		69,63	
Estación: Fecha:			E1 06/05/2005			i:	21,5 12:20	
Disco Secchi	(m):		2,4		Capa fótica	(m):	4,1	
Prof.	Cota	Temp	pH	OD	OD	Cond.	Redox	T.D.S.
m.	msnm	°C	unid	mg/l	% sat.	μ S/cm	mV	mg/l
0	70	15,56	7,51	9,30	93,7	753	249	489
1	69	15,55	7,75	9,27	93,4	753	250	489
2	68	15,47	7,87	9,20	92,5	756	249	491
3	67	15,41	7,94	9,11	91,3	754	247	490
4	66	15,34	7,98	9,01	90,4	754	242	490
5	65	15,31	8,02	8,94	89,6	754	238	490
6	64	15,28	8,03	8,90	89,1	754	234	490
7	63	15,26	8,06	8,82	88,3	754	228	490
8	62	15,26	8,07	8,80	88,0	754	231	490
9	61	15,22	8,08	8,79	87,8	754	221	490
10	60	15,19	8,09	8,80	87,8	753	218	489
11	59	15,18	8,11	8,83	88,1	753	215	489
12	58	15,19	8,11	8,82	88,1	753	211	489
13	57	15,18	8,12	8,82	88,1	753	208	489
14	56	15,18	8,13	8,80	87,9	753	203	489
15	55	15,17	8,13	8,78	87,7	753	200	489
16	54	15,17	8,14	8,78	87,5	753	199	489
17	53	15,17	8,14	8,76	87,4	753	195	489
18	52	15,16	8,15	8,74	87,2	753	193	489
19	51	15,15	8,15	8,73	87,0	753	191	489
20	50	15,15	8,15	8,72	87,0	753	189	489
21	49	15,15	8,16	8,70	86,8	753	185	489
22	48	15,15	8,16	8,68	86,6	752	182	489

TRIBUTA	RIO:	Segre		CAMPA	ÑA:	3		
Estación: Fecha:		RBT1 06/05/2005		Cod. Est Hora:	i :	RB3T1 14:30		
Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S.
m.	msnm	°C	unid	mg/l	% sat.	μS/cm	mV	mg/l
1	-	18,32	8,37	10,08	107,40	567	-	369

	4		CAMPAÑA:			RIBARROJA (RB)		EMBALSE:
	69,43		NIVEL:		70			COT. MAX:
	20.7	_			Г1			F-4!4
	28,7		Profundidad		E1			Estación:
	13:30		Hora:		19/08/2005		<i>(</i>)	Fecha:
	3,6	(m):	Capa fótica	(2,1		(m):	Disco Secchi
T.D.S.	Redox	Cond.	OD	OD	рН	Temp	Cota	Prof.
mg/l	mV	μS/cm	% sat.	mg/l	unid	°C	msnm	m.
665	229	1.023	95,3	7,88	8,13	24,84	69	0
664	225	1.022	93,2	7,71	8,10	24,80	68	1
664	222	1.022	92,3	7,64	8,07	24,78	67	2
665	223	1.023	83,5	6,92	7,99	24,71	66	3
665	212	1.023	82,9	6,87	7,97	24,70	65	4
665	209	1.023	78,0	6,47	7,92	24,67	64	5
666	208	1.024	76,5	6,35	7,92	24,66	63	6
666	207	1.024	76,0	6,30	7,91	24,66	62	7
666	207	1.024	75,5	6,26	7,91	24,66	61	8
666	206	1.024	75,2	6,24	7,91	24,65	60	9
666	205	1.024	75,2	6,29	7,91	24,65	59	10
666	204	1.024	74,8	6,21	7,91	24,63	58	11
666	202	1.025	71,9	5,97	7,88	24,58	57	12
667	201	1.026	69,9	5,81	7,86	24,57	56	13
668	200	1.027	69,1	5,75	7,84	24,55	55	14
680	191	1.046	49,1	4,11	7,65	24,10	54	15
725	184	1.115	14,6	1,24	7,49	23,34	53	16
746	182	1.148	10,1	0,87	7,47	23,12	52	17
770	183	1.185	10,3	0,89	7,48	22,89	51	18
788	181	1.212	10,0	0,86	7,46	22,67	50	19
799	181	1.229	8,8	0,76	7,46	22,54	49	20
808	181	1.243	7,4	0,64	7,46	22,43	48	21
822	180	1.264	5,4	0,47	7,44	22,26	47	22
826	179	1.270	3,8	0,33	7,45	22,16	46	23
826	178	1.271	3,2	0,28	7,45	22,15	45	24
835	174	1.284	2,4	0,21	7,44	21,98	44	25
837	159	1.288	2,1	0,18	7,43	21,86	43	26
838	121	1.289	2,0	0,17	7,43	21,84	42	27
838	104	1.289	1,9	0,17	7,44	21,84	41	28
838	93	1.289	1,9	0,17	7,44	21,84	41	28,7

TRIBUTA	RIO:	Segre		CAMPAI	ÑA:	4		
Estación: Fecha:		RBT1 19/08/2005		Cod. Est Hora:	.:	RB4T1 14:30		
Prof.	Cota	Temp	pН	OD	OD	Cond.	Redox	T.D.S.
<u> </u>	msnm	°C	unid	mg/l	% sat.	μS/cm	mV	mg/l
1	-	23,85	8,25	44,30	101,50	716	221	465

ANEXO II. RESULTADOS QUÍMICOS

EMBALSE:	RIBARROJA			CÓDIGO:	RB1
CAMPAÑA:	1			FECHA:	21/08/2004
COTA MÁXIMA:	70			NIVEL:	69,7
		CÓDI	GO DEL P	UNTO DE MU	<i>IESTREO</i>
PARÁMETRO	UNIDAD	E1S	E1T	E1F	T1
PROFUNDIDAD	m	1	14	20	
COTA	msnm	69	56	50	
SÓLIDOS EN SUSPENSIÓN	mg/l	3,5	5,1	6,1	46,4
ALCALINIDAD TOTAL	mg CO₃Ca/I	139,9	140,4	159,5	153,3
DBO ₅	mg O ₂ /I	2,9	1,9	1,6	1,2
DQO	mg O ₂ /I	7,9	7,9	11,9	4,0
FÓSFORO TOTAL	mg P/I	0,074	0,082	0,048	0,141
FOSFATOS	mg PO ₄ 3/I	0,045	0,036	0,066	0,195
FOSFATOS	mg P/I	0,015	0,012	0,022	0,064
NITRÓGENO KJELDAHL	mg N/I	0,65	1,03	0,65	0,86
AMONIO TOTAL	mg NH ₄ /I	0,07	0,11	0,12	0,20
AMONIO TOTAL	mg N/I	0,05	0,09	0,10	0,16
NITRÓGENO ORGÁNICO	mg N/I	0,59	0,94	0,55	0,70
NITRATOS	mg NO₃/I	7,93	8,56	9,34	11,22
NITRATOS	mg N/I	1,79	1,93	2,11	2,53
NITRITOS	mg NO ₂ /I	0,238	0,229	0,295	0,094
NITRITOS	mg N/I	0,072	0,070	0,090	0,029
N INORGÁNICO	mg N/I	1,92	2,09	2,30	2,72
CALCIO	mg Ca/l	71,9	76,5	84,8	
MAGNESIO DISUELTO	mg Mg/l	22,9	23,1	24,6	
SODIO	mg Na/I	63,3	62,9	74,3	
POTASIO	mg K/I	3,2	3,1	3,5	
CLORUROS	mg Cl⁻/l	78,0	78,0	89,0	
SULFATOS	mg SO ₄ -2/l	78,6	83,1	55,7	
SULFUROS	mg S ⁻² /I			0,000	
SÍLICE	mg SiO ₂ /I	4,95	4,79	5,34	
CLOROFILA a	μ g/l	16,1			

EMBALSE:	RIBARROJA			CÓDIGO:	RB2	
CAMPAÑA:	2			FECHA:	15/12/2004	
COTA MÁXIMA:	70			NIVEL:	69,6	
		CODIC	O DEL	PUNTO DE	MUESTREO	
PARÁMETRO	UNIDAD	E1S	E1M	E1F	T1	<i>T2</i>
PROFUNDIDAD	m	1	11	21		
COTA	msnm	69	59	49		
SÓLIDOS EN SUSPENSIÓN	mg/l	1,7			10,5	3,0
ALCALINIDAD TOTAL	mg CO₃Ca/I	157,6			127,4	176,8
DBO ₅	mg O ₂ /I	2,4			1,9	0,8
DQO	mg O ₂ /I	8,0			4,0	4,0
FÓSFORO TOTAL	mg P/I	0,063	0,076	0,056	0,143	0,022
FOSFATOS	mg PO ₄ 3/I	0,123	0,129	0,119	0,299	0,019
FOSFATOS	mg P/I	0,040	0,042	0,039	0,097	0,006
NITRÓGENO KJELDAHL	mg N/I	0,53	0,61	0,74	0,72	0,46
AMONIO TOTAL	mg NH ₄ /I	0,11	0,11	0,11	0,13	0,02
AMONIO TOTAL	mg N/I	0,08	0,09	0,09	0,10	0,01
NITRÓGENO ORGÁNICO	mg N/I	0,45	0,52	0,65	0,62	0,45
NITRATOS	mg NO ₃ /I	12,04	12,04	12,12	8,82	4,69
NITRATOS	mg N/I	2,72	2,72	2,74	1,99	1,06
NITRITOS	mg NO ₂ /I	0,230	0,232	0,231	0,254	0,024
NITRITOS	mg N/I	0,070	0,071	0,070	0,077	0,007
N INORGÁNICO	mg N/I	2,87	2,88	2,89	2,17	1,08
CLOROFILA a	µg/l	3,4				

EMBALSE:	RIBARROJA			CÓDIGO:	RB3	
CAMPAÑA:					_	
	3			FECHA:	06/05/2005	
COTA MÁXIMA:	70	- 4		NIVEL:	69,6	
					MUESTREO	
PARÁMETRO	UNIDAD	E1S	E1M	E1F	T1	
PROFUNDIDAD	m	1	11	21		
COTA	msnm	69	59	49		
SÓLIDOS EN SUSPENSIÓN	mg/l	6,3			17,1	
ALCALINIDAD TOTAL	mg CO₃Ca/I	163,0			131,7	
DBO ₅	mg O ₂ /I	1,1			2,3	
DQO	mg O ₂ /I	23,8			19,8	
FÓSFORO TOTAL	mg P/I	0,037	0,036	0,034	0,138	
FOSFATOS	mg PO ₄ 3/I	0,072	0,072	0,071	0,264	
FOSFATOS	mg P/I	0,023	0,023	0,023	0,086	
NITRÓGENO KJELDAHL	mg N/I	0,90	0,89	0,91	0,97	
AMONIO TOTAL	mg NH ₄ /I	0,08	0,08	0,08	0,09	
AMONIO TOTAL	mg N/I	0,06	0,06	0,06	0,07	
NITRÓGENO ORGÁNICO	mg N/I	0,84	0,83	0,84	0,90	
NITRATOS	mg NO₃/I	10,51	10,55	11,13	6,46	
NITRATOS	mg N/I	2,37	2,38	2,51	1,46	
NITRITOS	mg NO ₂ /I	0,149	0,153	0,146	0,199	
NITRITOS	mg N/I	0,045	0,047	0,044	0,061	
N INORGÁNICO	mg N/I	2,48	2,49	2,62	1,59	
CLOROFILA a	μg/l	5,7				

EMBALSE:	DID A DDO IA			CÓDIGO:	DD4	
	RIBARROJA					
CAMPAÑA:	4			FECHA:	19/08/2005	
COTA MÁXIMA:	70			NIVEL:	69,4	
		CÓDIG	O DEL P	UNTO DE I	MUESTREO	
PARÁMETRO	UNIDAD	E1S	E1M	E1F	T1	
PROFUNDIDAD	m	1	16	28		
COTA	msnm	68	53	41		
SÓLIDOS EN SUSPENSIÓN	mg/l	2,6			19,8	
DBO ₅	mg O ₂ /I	2,3			1,5	
DQO	mg O ₂ /I	4,0			4,0	
FÓSFORO TOTAL	mg P/I	0,033	0,038	0,091	0,096	
FOSFATOS	mg PO ₄ ³/I	0,068	0,091	0,266	0,237	
FOSFATOS	mg P/I	0,022	0,030	0,087	0,077	
NITRÓGENO KJELDAHL	mg N/I	1,03	0,45	0,89	0,59	
AMONIO TOTAL	mg NH ₄ /I	0,07	0,18	0,64	0,07	
AMONIO TOTAL	mg N/I	0,05	0,14	0,50	0,05	
NITRÓGENO ORGÁNICO	mg N/I	0,98	0,31	0,39	0,54	
NITRATOS	mg NO₃/I	6,24	6,20	6,97	11,06	
NITRATOS	mg N/I	1,41	1,40	1,57	2,50	
NITRITOS	mg NO ₂ /I	0,322	0,345	0,440	0,095	
NITRITOS	mg N/I	0,098	0,105	0,134	0,029	
N INORGÁNICO	mg N/I	1,56	1,64	2,20	2,58	
SULFUROS	mg S ⁻² /I			0,000		
CLOROFILA a	μ g/l	1,3				

ANEXO III. RESULTADOS BIOLÓGICOS

EMBALSE:	RIBARROJA	CÓDIGO:	RB1
CAMPAÑA:	1	FECHA:	21/08/2004
COTAMAX:	70	D. SECCHI:	1,4
NIVEL:	70	C.FÓTICA:	2,4
PARÁMETRO	UNIDAD	CÓDIGO DEL PUNTO D	
		E1S	
PROFUNDIDAD	m	1	
COTA	msnm	69	
CLOROFILA a	μg/l	16,10	
Población total	n°cel/ml	6.898	
Diversidad (H)	Bits	3,36	
Clase BACILLARIOFICEA	n°cel/ml	638	
Grupo CIANOBACTERIA	n°cel/ml	2.667	
Clase CLOROFICEA	n°cel/ml	2.477	
Clase CRIPTOFICEA	n°cel/ml	996	
Clase CRISOFICEA	n°cel/ml	0	
Clase DINOFICEA	n°cel/ml	56	
Clase EUGLENOFICEA	n°cel/ml	0	
Clase XANTOFICEA	n°cel/ml	o o	
Clase ZIGOFICEA	n°cel/ml	64	
ESPECIES	TAXÓN	n° cel/ml	
Amphora sp.	Bacillariofícea	1	
Aulacoseira granulata	Bacillariofícea	122	
Cocconeis sp.	Bacillariofícea	1	
Cyclotella sp.	Bacillariofícea	345	
Nitzschia acicularis	Bacillariofícea	168	
Nitzschia palea	Bacillariofícea	1	
Anabaena sp.	Cianobacteria	27	
Aphanizomenon sp.	Cianobacteria	2	
Chroococcus sp.	Cianobacteria	3	
Oscillatoria limnetica	Cianobacteria	2.630	
Planktothrix agardhii	Cianobacteria	5	
Actinastrum sp.	Clorofícea	4	
Ankistrodesmus sp.	Clorofícea	63	
Coelastrum microporum	Clorofícea	204	
Crucigenia crucifera	Clorofícea	72	
Crucigenia quadrata	Clorofícea	54	
Chlamydomonas sp.	Clorofícea	240	
Chlorococcum sp.	Clorofícea	1.025	
Dictyosphaerium pulchellum	Clorofícea	73	
Oocystis sp.	Clorofícea	159	
Pediastrum boryanum	Clorofícea	38	
Pediastrum clathratum	Clorofícea	1	
Pediastrum duplex	Clorofícea	73	
Pediastrum simplex	Clorofícea	86	
Scenedesmus acuminatus	Clorofícea	253	
Scenedesmus arcuatus	Clorofícea	3	
Scenedesmus quadricauda	Clorofícea	61	
Scenedesmus sp.	Clorofícea	15	
Schroederia setigera	Clorofícea	5	
Tetraedron caudatum	Clorofícea	7	
Tetraedron incus	Clorofícea	1	

Continuación 1ª Campaña

EMBALSE:	RIBARROJA	CÓDIGO:	RB1
CAMPAÑA:	1	FECHA:	21/08/2004
COTAMAX:	70	D. SECCHI:	1,4
NIVEL:	70	C.FÓTICA:	2,4
PARÁMETRO	UNIDAD	CÓDIGO DEL PUNTO D	E MUESTREO
		E1S	
ESPECIES	TAXÓN	n° cel/ml	
Tetraedron minimum	Clorofícea	32	
Tetraedron muticum	Clorofícea	8	
Cryptomonas erosa	Criptofícea	141	
Cryptomonas ovata	Criptofícea	77	
Cryptomonas sp.	Criptofícea	25	
Rhodomonas minuta	Criptofícea	753	
Gymnodinium sp.	Dinofícea	50	
Peridinium sp.	Dinofícea	6	
Closterium sp.	Zigofícea	1	
Cosmarium ornatum	Zigofícea	9	
Cosmarium sp.	Zigofícea	45	
Staurastrum sp.	Zigofícea	9	

EMBALSE:	RIBARROJA	CÓDIGO:	RB2
CAMPAÑA:	2	FECHA:	15/12/2004
COTAMAX:	70	D. SECCHI:	2,5
NIVEL:	70	C.FÓTICA:	4,3
PARÁMETRO	UNIDAD	CÓDIGO DEL PUNTO D	E MUESTREO
		E1S	
PROFUNDIDAD	m	1	
COTA	msnm	69	
CLOROFILA a	μ g/l	3,40	
Población total	n°cel/ml	1.430	
Diversidad (H)	Bits	1,93	
Clase BACILLARIOFICEA	n°cel/ml	132	
Grupo CIANOBACTERIA	n°cel/ml	606	
Clase CLOROFICEA	n°cel/ml	15	
Clase CRIPTOFICEA	n°cel/ml	676	
Clase CRISOFICEA	n°cel/ml	0	
Clase DINOFICEA	n°cel/ml	1	
Clase EUGLENOFICEA	n°cel/ml	0	
Clase XANTOFICEA	n°cel/ml	0	
Clase ZIGOFICEA	n°cel/ml	0	
ESPECIES	TAXÓN	n° cel/ml	
Aulacoseira granulata	Bacillariofícea	1	
Aulacoseira italica	Bacillariofícea	15	
Fragilaria ulna	Bacillariofícea	4	
Navicula sp.	Bacillariofícea	1	
Nitzschia acicularis	Bacillariofícea	5	
Nitzschia palea	Bacillariofícea	1	
Stephanodiscus hantzschii	Bacillariofícea	105	
Planktothrix agardhii	Cianobacteria	606	
Ankistrodesmus falcatus	Clorofícea	6	
Chlamydomonas sp.	Clorofícea	7	
Scenedesmus quadricauda	Clorofícea	2	
Cryptomonas erosa	Criptofícea	36	
Cryptomonas marssonii	Criptofícea	24	
Cryptomonas ovata	Criptofícea	16	
Cryptomonas phaseolus	Criptofícea	1	
Cryptomonas reflexa	Criptofícea	2	
Cryptomonas rostratiformis	Criptofícea	1	
Rhodomonas minuta	Criptofícea	596	
Peridinium sp.	Dinofícea	1	

EMBALSE:	RIBARROJA	CÓDIGO:	RB3
CAMPAÑA:	3	FECHA:	06/05/2005
COTAMAX:	70	D. SECCHI:	2,4
NIVEL:	70	C.FÓTICA:	4,1
PARÁMETRO	UNIDAD	CÓDIGO DEL PUNTO	
		E1S	
PROFUNDIDAD	m	1	
COTA	msnm	69	
CLOROFILA a	μ g/l	5,70	
Población total	n°cel/ml	1.858	
Diversidad (H)	Bits	2,75	
Clase BACILLARIOFICEA	n°cel/ml	717	
Grupo CIANOBACTERIA	n°cel/ml	22	
Clase CLOROFICEA	n°cel/ml	203	
Clase CRIPTOFICEA	n°cel/ml	906	
Clase CRISOFICEA	n°cel/ml	4	
Clase DINOFICEA	n°cel/ml	6	
Clase EUGLENOFICEA	n°cel/ml	0	
Clase XANTOFICEA	n°cel/ml	0	
Clase ZIGOFICEA	n°cel/ml	0	
ESPECIES	TAXÓN	n° cel/r	ml
Asterionella formosa	Bacillariofícea	20	
Aulacoseira granulata	Bacillariofícea	1	
Aulacoseira italica	Bacillariofícea	5	
Cocconeis sp.	Bacillariofícea	1	
Cyclostephanos dubius	Bacillariofícea	406	
Cyclotella bodanica	Bacillariofícea	270	
Cyclotella meneghiniana	Bacillariofícea	1	
Fragilaria ulna	Bacillariofícea	1	
Melosira varians	Bacillariofícea	1	
Navicula sp.	Bacillariofícea	1	
Nitzschia acicularis	Bacillariofícea	4	
Nitzschia fruticosa	Bacillariofícea	1	
Nitzschia palea	Bacillariofícea	1	
Nitzschia sp.	Bacillariofícea	4	
Oscillatoria limnetica	Cianobacteria	22	
Actinastrum hantzschii	Clorofícea	1	
Ankistrodesmus sp.	Clorofícea	5	
Ankyra sp.	Clorofícea	2	
Asterococcus sp.	Clorofícea	1	
Carteria sp.	Clorofícea	1	
Crucigenia quadrata	Clorofícea	2	
Chlamydomonas sp.	Clorofícea	14	
Chlorococcum sp.	Clorofícea	38	
Eudorina elegans	Clorofícea	1	
Kirchneriella sp.	Clorofícea	2	
Klebsormidium sp.	Clorofícea	106	
Monoraphidium sp.	Clorofícea	1	
Oocystis lacustris	Clorofícea	1	
Pediastrum boryanum	Clorofícea	1	
Pediastrum clathratum	Clorofícea	1	
Scenedesmus acuminatus	Clorofícea	5	

Continuación 3ª Campaña

EMBALSE:	RIBARROJA	CÓDIGO: RB3
CAMPAÑA:	3	FECHA: 06/05/2005
COTAMAX:	70	D. SECCHI: 2,4
NIVEL:	70	C.FÓTICA: 4,1
PARÁMETRO	UNIDAD	CÓDIGO DEL PUNTO DE MUESTREO
		E1S
ESPECIES	TAXÓN	n° cel/ml
Scenedesmus acutus	Clorofícea	5
Scenedesmus quadricauda	Clorofícea	14
Scenedesmus sp.	Clorofícea	1
Selenastrum sp.	Clorofícea	1
Cryptomonas erosa	Criptofícea	12
Cryptomonas ovata	Criptofícea	1
Cryptomonas sp.	Criptofícea	222
Rhodomonas minuta	Criptofícea	671
Dinobryon sp.	Crisofícea	1
Mallomonas sp.	Crisofícea	3
Peridinium sp.	Dinofícea	6

EMBALSE:	RIBARROJA	CÓDIGO:	RB4
CAMPAÑA:	4	FECHA:	19/08/2005
COTAMAX:	70	D. SECCHI:	2,1
NIVEL:	69	C.FÓTICA:	3,6
PARÁMETRO	UNIDAD	CÓDIGO DEL PUNTO	
7.1.5.11.10	0.11.27.12	E1S	
PROFUNDIDAD	m	1	
COTA	msnm	68	
CLOROFILA a	μ g/l	1,30	
Población total	n°cel/ml	11.826	
Diversidad (H)	Bits	3,84	
Clase BACILLARIOFICEA	n°cel/ml	70	
Grupo CIANOBACTERIA	n°cel/ml	8	
Clase CLOROFICEA	n°cel/ml	11.338	
Clase CRIPTOFICEA	n°cel/ml	340	
Clase CRISOFICEA	n°cel/ml	0	
Clase DINOFICEA	n°cel/ml	50	
Clase EUGLENOFICEA	n°cel/ml	0	
Clase XANTOFICEA	n°cel/ml	0	
Clase ZIGOFICEA	n°cel/ml	20	
ESPECIES	TAXÓN	nº cel/m	1
Actinocyclus normanii	Bacillariofícea	48	
Amphora sp.	Bacillariofícea	1	
Aulacoseira granulata	Bacillariofícea	1	
Cyclotella sp.	Bacillariofícea	16	
Cymatopleura solea	Bacillariofícea	2	
Navicula cryptocephala	Bacillariofícea	1	
Nitzschia sp.	Bacillariofícea	1	
Anabaena sp.	Cianobacteria	4	
Chroococcus sp.	Cianobacteria	2	
Planktothrix sp.	Cianobacteria	2	
Actinastrum hantzschii	Clorofícea	2	
Ankyra sp.	Clorofícea	30	
Asterococcus sp.	Clorofícea	74	
Coelastrum astroideum	Clorofícea	278	
Coelastrum microporum	Clorofícea	2.677	
Coelastrum reticulatum	Clorofícea	869	
Crucigenia quadrata	Clorofícea	1.477	
Crucigeniella rectangularis	Clorofícea	226	
Crucigeniella sp.	Clorofícea	16	
Chlorococcum sp.	Clorofícea	340	
Dictyosphaerium pulchellum	Clorofícea	4	
	Clorofícea	5	
Elakatothrix gelatinosa Elakatothrix genevensis	Cloroficea	3	
-	Cloroficea	70	
Geminella sp.	Cloroficea	3	
Oocystis lacustris	Cloroficea		
Oocystis sp.	Cloroficea	230	
Pediastrum boryanum	Cloroficea	104	
Pediastrum clathratum	Cloroficea	1.880	
Pediastrum duplex	Cloroficea	520	
Pediastrum simplex		30	
Pediastrum tetras	Clorofícea	278	

Continuación 4ª Campaña

EMBALSE:	RIBARROJA	CÓDIGO: RB4
CAMPAÑA:	4	FECHA: 19/08/2005
COTAMAX:	70	D. SECCHI: 2,1
NIVEL:	69	C.FÓTICA: 3,6
PARÁMETRO	UNIDAD	CÓDIGO DEL PUNTO DE MUESTREO
		E1S
ESPECIES	TAXÓN	n° cel/ml
Scenedesmus acuminatus	Clorofícea	70
Scenedesmus acutus	Clorofícea	16
Scenedesmus linearis	Clorofícea	235
Scenedesmus opoliensis	Clorofícea	32
Scenedesmus platydiscus	Clorofícea	4
Scenedesmus quadricauda	Clorofícea	730
Scenedesmus smithii	Clorofícea	122
Scenedesmus sp.	Clorofícea	17
Schroederia setigera	Clorofícea	2
Sphaerocystis schroeteri	Clorofícea	382
Tetraedron caudatum	Clorofícea	14
Tetraedron minimum	Clorofícea	2
Tetraedron muticum	Clorofícea	26
Tetraedron trigonum	Clorofícea	1
Treubaria quadrispina	Clorofícea	13
Westella botryoides	Clorofícea	556
Cryptomonas erosa	Criptofícea	39
Cryptomonas ovata	Criptofícea	26
Cryptomonas sp.	Criptofícea	226
Rhodomonas minuta	Criptofícea	49
Ceratium hirundinella	Dinofícea	1
Glenodinium sp.	Dinofícea	48
Gymnodinium sp.	Dinofícea	1
Closterium acutum	Zigofícea	1
Closterium sp.	Zigofícea	2
Cosmarium bioculatum	Zigofícea	1
Cosmarium sp.	Zigofícea	15
Staurastrum sp.	Zigofícea	1

REPORTAJE FOTOGRÁFICO

Vista de la presa desde la estación de muestreo (E1). Verano de 2004 (21/08/2004)

Detalle de la presa desde la estación de muestreo (E1). Verano de 2005 (19/08/2005)

Río Segre, tributario del embalse de Ribarroja. Primavera de 2005 (06/05/2005)

Aspecto que presentaba el río Matarraña en verano de 2004 (21/08/2004)

Río Matarraña en invierno de 2004 (15/12/2004)

APÉNDICE 1: FICHA DESCRIPTIVA DEL EMBALSE

Datos generales de embalse

Fecha actualización: Junio de 2006

EMBALSE: RIBARROJA CÓDIGO: RB

LOCALIZACIÓN:

Autonomía: Cataluña Provincia: Tarragona

Municipio: Ribarroja de Segre

Situación en C.H.Ebro

CARACTERÍSTICAS GENERALES DEL EMBALSE:

Tributario principal: Ebro Otros tributarios: Segre,

Matarraña

Año de terminación: 1969 Propietario: ENHER

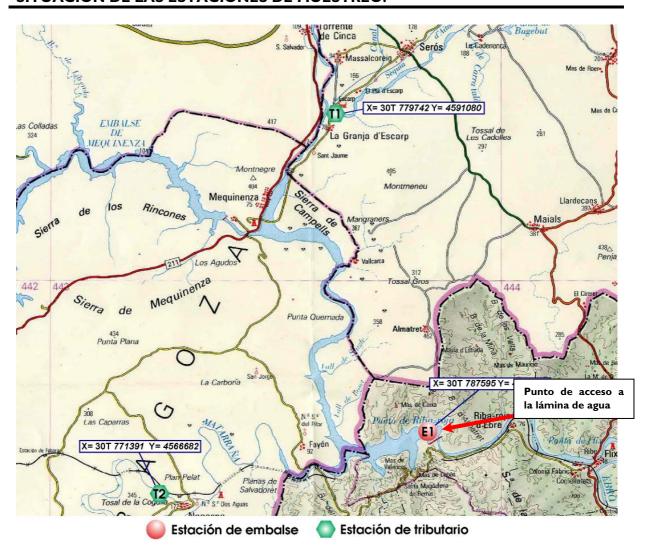
Cuenca a la que pertenece: Ebro Altitud (msnm): 70

Capacidad total (hm³): 210 Capacidad útil (hm³):
Longitud máxima (km): 35

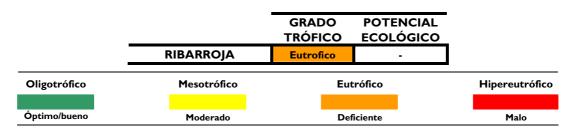
Perímetro (km): 98

Longitud máxima (km): 35 Perímetro (km): 98 Profundidad máxima (m): 34 Profundidad media (m): 10,3

Usos principales: Hidroeléctrico Otros usos: Riego,


abastecimiento

Panorámica del embalse (21/08/2004)


SITUACIÓN DE LAS ESTACIONES DE MUESTREO:

N° Plano/s 1:50.000: 415,443

DIAGNÓSTICO DE LA CALIDAD

CARACTERÍSTICAS FÍSICO-QUÍMICAS: (Datos referidos a la estación de presa -EI-)

I ^a CAMPAÑA	Muestreador:	Javier Ramírez	Fecha de muestreo: 21/08/2004				
T ^a superficie (°C):		pH superficie (ud): 8,86	Conductividad superficie (µS/cm): 839				
T ^a fondo (°C):		pH fondo (ud): 7,76	Conductividad fondo (µS/cm): 992				
Ta TI (°C):	23,43	pH T1 (ud): 8,91	Conductividad TI (µS/cm): 668				
T ^a T2 (°C):	Cauce seco	pH T2 (ud): -	Conductividad T2 (µS/cm): -				
		Transparencia					
Disco	de Secchi (m)	Capa fótica (m)	-D.S. x 1,7-				
EI	1,4	2,4					
Termo	clina: Si	Profun	didad (m): 14				
Condiciones anó	xicas: Si	Grosor capa an	óxica (m): 4				
2ª CAMPAÑA		Javier Ramírez	Fecha de muestreo: 15/12/2004				
T ^a superficie (°C):		pH superficie (ud): 8,00	Conductividad superficie (µS/cm): 1.672				
T ^a fondo (°C):		pH fondo (ud): 7,95	Conductividad fondo (µS/cm): 1.709				
Ta TI (°C):		pH T1 (ud): 8,19	Conductividad TI (µS/cm): 688				
T ^a T2 (°C):	9,56	pH T2 (ud): 8,40	Conductividad T2 (µS/cm): 567				
		Transparencia					
Disco	de Secchi (m)	Capa fótica (m)	-D.S. x 1,7-				
EI	2,5	4,3					
Termo	clina: No	Profun	didad (m): -				
Condiciones anó	xicas: No	Grosor capa an	óxica (m): -				
~							
3ª CAMPAÑA		Javier Ramírez	Fecha de muestreo: 06/05/2005				
T ^a superficie (°C):	15,56	pH superficie (ud): 7,51	Conductividad superficie (µS/cm): 753				
T ^a superficie (°C): T ^a fondo (°C):	15,56 15,15	pH superficie (ud): 7,51 pH fondo (ud): 8,16	Conductividad superficie (µS/cm): 753 Conductividad fondo (µS/cm): 752				
T ^a superficie (°C): T ^a fondo (°C): T ^a TI (°C):	15,56 15,15 18,32	pH superficie (ud): 7,51 pH fondo (ud): 8,16 pH TI (ud): 8,37	Conductividad superficie (μS/cm): 753 Conductividad fondo (μS/cm): 752 Conductividad TI (μS/cm): 567				
T ^a superficie (°C): T ^a fondo (°C):	15,56 15,15 18,32	pH superficie (ud): 7,51 pH fondo (ud): 8,16 pH TI (ud): 8,37 pH T2 (ud): -	Conductividad superficie (µS/cm): 753 Conductividad fondo (µS/cm): 752				
T ^a superficie (°C): T ^a fondo (°C): T ^a TI (°C): T ^a T2 (°C):	15,56 15,15 18,32 Cauce seco	pH superficie (ud): 7,51 pH fondo (ud): 8,16 pH TI (ud): 8,37 pH T2 (ud): - Transparencia	Conductividad superficie (μS/cm): 753 Conductividad fondo (μS/cm): 752 Conductividad TI (μS/cm): 567 Conductividad T2 (μS/cm): -				
Ta superficie (°C): Ta fondo (°C): Ta TI (°C): Ta T2 (°C): Disco	15,56 15,15 18,32 Cauce seco	pH superficie (ud): 7,51 pH fondo (ud): 8,16 pH TI (ud): 8,37 pH T2 (ud): - Transparencia Capa fótica (m)	Conductividad superficie (μS/cm): 753 Conductividad fondo (μS/cm): 752 Conductividad TI (μS/cm): 567 Conductividad T2 (μS/cm): -				
Ta superficie (°C): Ta fondo (°C): Ta TI (°C): Ta T2 (°C): Disco	15,56 15,15 18,32 Cauce seco de Secchi (m) 2,4	pH superficie (ud): 7,51 pH fondo (ud): 8,16 pH TI (ud): 8,37 pH T2 (ud): - Transparencia Capa fótica (m) 4,1	Conductividad superficie (µS/cm): 753 Conductividad fondo (µS/cm): 752 Conductividad TI (µS/cm): 567 Conductividad T2 (µS/cm): -				
Ta superficie (°C): Ta fondo (°C): Ta TI (°C): Ta T2 (°C): Disco EI Termo	15,56 15,15 18,32 Cauce seco de Secchi (m) 2,4 clina: No	pH superficie (ud): 7,51 pH fondo (ud): 8,16 pH TI (ud): 8,37 pH T2 (ud): - Transparencia Capa fótica (m) 4,1 Profun	Conductividad superficie (µS/cm): 753 Conductividad fondo (µS/cm): 752 Conductividad T1 (µS/cm): 567 Conductividad T2 (µS/cm): - -D.S. x 1,7- didad (m): -				
Ta superficie (°C): Ta fondo (°C): Ta TI (°C): Ta T2 (°C): Disco	15,56 15,15 18,32 Cauce seco de Secchi (m) 2,4 clina: No	pH superficie (ud): 7,51 pH fondo (ud): 8,16 pH TI (ud): 8,37 pH T2 (ud): - Transparencia Capa fótica (m) 4,1	Conductividad superficie (µS/cm): 753 Conductividad fondo (µS/cm): 752 Conductividad TI (µS/cm): 567 Conductividad T2 (µS/cm): - -D.S. x 1,7- didad (m): -				
Ta superficie (°C): Ta fondo (°C): Ta TI (°C): Ta T2 (°C): Disco EI Termo Condiciones anó	15,56 15,15 18,32 Cauce seco de Secchi (m) 2,4 clina: No xicas: No	pH superficie (ud): 7,51 pH fondo (ud): 8,16 pH T1 (ud): 8,37 pH T2 (ud): - Transparencia Capa fótica (m) 4,1 Profun Grosor capa an	Conductividad superficie (µS/cm): 753 Conductividad fondo (µS/cm): 752 Conductividad TI (µS/cm): 567 Conductividad T2 (µS/cm): - -D.S. x 1,7- didad (m): - óxica (m): -				
Ta superficie (°C): Ta fondo (°C): Ta TI (°C): Ta T2 (°C): Disco EI Termo Condiciones anó	15,56 15,15 18,32 Cauce seco de Secchi (m) 2,4 clina: No xicas: No	pH superficie (ud): 7,51 pH fondo (ud): 8,16 pH T1 (ud): 8,37 pH T2 (ud): - Transparencia Capa fótica (m) 4,1 Profun Grosor capa an	Conductividad superficie (µS/cm): 753 Conductividad fondo (µS/cm): 752 Conductividad TI (µS/cm): 567 Conductividad T2 (µS/cm): - -D.S. x 1,7- didad (m): - óxica (m): -				
Ta superficie (°C): Ta fondo (°C): Ta TI (°C): Ta T2 (°C): Disco EI Termo Condiciones anó 4a CAMPAÑA Ta superficie (°C):	15,56 15,15 18,32 Cauce seco de Secchi (m) 2,4 clina: No xicas: No Muestreador: 24,84	pH superficie (ud): 7,51 pH fondo (ud): 8,16 pH T1 (ud): 8,37 pH T2 (ud): - Transparencia Capa fótica (m) 4,1 Profun Grosor capa an	Conductividad superficie (µS/cm): 753 Conductividad fondo (µS/cm): 752 Conductividad TI (µS/cm): 567 Conductividad T2 (µS/cm): - -D.S. x 1,7- didad (m): - óxica (m): - Fecha de muestreo: 19/08/2005 Conductividad superficie (µS/cm): 1.023				
Ta superficie (°C): Ta fondo (°C): Ta TI (°C): Ta T2 (°C): Disco EI Termo Condiciones anó 4a CAMPAÑA Ta superficie (°C): Ta fondo (°C):	15,56 15,15 18,32 Cauce seco de Secchi (m) 2,4 clina: No xicas: No Muestreador: 24,84 21,84	pH superficie (ud): 7,51 pH fondo (ud): 8,16 pH T1 (ud): 8,37 pH T2 (ud): - Transparencia Capa fótica (m) 4,1 Profun Grosor capa an Javier Ramírez pH superficie (ud): 8,13 pH fondo (ud): 7,44	Conductividad superficie (μS/cm): 753 Conductividad fondo (μS/cm): 752 Conductividad TI (μS/cm): 567 Conductividad T2 (μS/cm): - -D.S. x 1,7- didad (m): - óxica (m): - Fecha de muestreo: 19/08/2005 Conductividad superficie (μS/cm): 1.023 Conductividad fondo (μS/cm): 1.289				
Ta superficie (°C): Ta fondo (°C): Ta TI (°C): Ta T2 (°C): Disco EI Termo Condiciones anó 4a CAMPAÑA Ta superficie (°C): Ta fondo (°C): Ta TI (°C):	15,56 15,15 18,32 Cauce seco de Secchi (m) 2,4 clina: No xicas: No Muestreador: 24,84 21,84 23,85	pH superficie (ud): 7,51 pH fondo (ud): 8,16 pH T1 (ud): 8,37 pH T2 (ud): - Transparencia Capa fótica (m) 4,1 Profun Grosor capa an Javier Ramírez pH superficie (ud): 8,13 pH fondo (ud): 7,44 pH T1 (ud): 8,25	Conductividad superficie (μS/cm): 753 Conductividad fondo (μS/cm): 752 Conductividad TI (μS/cm): 567 Conductividad T2 (μS/cm): - -D.S. x 1,7- didad (m): - óxica (m): - Fecha de muestreo: 19/08/2005 Conductividad superficie (μS/cm): 1.023 Conductividad fondo (μS/cm): 1.289 Conductividad TI (μS/cm): 716				
Ta superficie (°C): Ta fondo (°C): Ta TI (°C): Ta T2 (°C): Disco EI Termo Condiciones anó 4a CAMPAÑA Ta superficie (°C): Ta fondo (°C):	15,56 15,15 18,32 Cauce seco de Secchi (m) 2,4 clina: No xicas: No Muestreador: 24,84 21,84 23,85	pH superficie (ud): 7,51 pH fondo (ud): 8,16 pH T1 (ud): 8,37 pH T2 (ud): - Transparencia Capa fótica (m) 4,1 Profun Grosor capa an Javier Ramírez pH superficie (ud): 8,13 pH fondo (ud): 7,44 pH T1 (ud): 8,25 pH T2 (ud): -	Conductividad superficie (μS/cm): 753 Conductividad fondo (μS/cm): 752 Conductividad TI (μS/cm): 567 Conductividad T2 (μS/cm): - -D.S. x 1,7- didad (m): - óxica (m): - Fecha de muestreo: 19/08/2005 Conductividad superficie (μS/cm): 1.023 Conductividad fondo (μS/cm): 1.289				
Ta superficie (°C): Ta fondo (°C): Ta TI (°C): Ta T2 (°C): Disco EI Termo Condiciones anó 4a CAMPAÑA Ta superficie (°C): Ta fondo (°C): Ta TI (°C): Ta T2 (°C):	15,56 15,15 18,32 Cauce seco de Secchi (m) 2,4 clina: No xicas: No Muestreador: 24,84 21,84 23,85 Cauce seco	pH superficie (ud): 7,51 pH fondo (ud): 8,16 pH T1 (ud): 8,37 pH T2 (ud): - Transparencia Capa fótica (m) 4,1 Profun Grosor capa an Javier Ramírez pH superficie (ud): 8,13 pH fondo (ud): 7,44 pH T1 (ud): 8,25 pH T2 (ud): - Transparencia	Conductividad superficie (μS/cm): 753 Conductividad fondo (μS/cm): 752 Conductividad T1 (μS/cm): 567 Conductividad T2 (μS/cm): - -D.S. x 1,7- didad (m): - óxica (m): - Fecha de muestreo: 19/08/2005 Conductividad superficie (μS/cm): 1.023 Conductividad fondo (μS/cm): 1.289 Conductividad T1 (μS/cm): 716 Conductividad T2 (μS/cm): -				
Ta superficie (°C): Ta fondo (°C): Ta TI (°C): Ta T2 (°C): Disco EI Termo Condiciones anó 4a CAMPAÑA Ta superficie (°C): Ta fondo (°C): Ta T1 (°C): Ta T2 (°C): Disco	15,56 15,15 18,32 Cauce seco de Secchi (m) 2,4 clina: No xicas: No Muestreador: 24,84 21,84 23,85 Cauce seco de Secchi (m)	pH superficie (ud): 7,51 pH fondo (ud): 8,16 pH T1 (ud): 8,37 pH T2 (ud): - Transparencia Capa fótica (m) 4,1 Profun Grosor capa an Javier Ramírez pH superficie (ud): 8,13 pH fondo (ud): 7,44 pH T1 (ud): 8,25 pH T2 (ud): - Transparencia Capa fótica (m)	Conductividad superficie (μS/cm): 753 Conductividad fondo (μS/cm): 752 Conductividad T1 (μS/cm): 567 Conductividad T2 (μS/cm): - -D.S. x 1,7- didad (m): - óxica (m): - Fecha de muestreo: 19/08/2005 Conductividad superficie (μS/cm): 1.023 Conductividad fondo (μS/cm): 1.289 Conductividad T1 (μS/cm): 716 Conductividad T2 (μS/cm): -				
Ta superficie (°C): Ta fondo (°C): Ta TI (°C): Ta T2 (°C): Disco EI Termo Condiciones anó 4a CAMPAÑA Ta superficie (°C): Ta fondo (°C): Ta T1 (°C): Ta T2 (°C): Disco EI	15,56 15,15 18,32 Cauce seco de Secchi (m) 2,4 clina: No xicas: No Muestreador: 24,84 21,84 23,85 Cauce seco de Secchi (m) 2,1	pH superficie (ud): 7,51 pH fondo (ud): 8,16 pH T1 (ud): 8,37 pH T2 (ud): - Transparencia Capa fótica (m) 4,1 Profun Grosor capa an Javier Ramírez pH superficie (ud): 8,13 pH fondo (ud): 7,44 pH T1 (ud): 8,25 pH T2 (ud): - Transparencia Capa fótica (m) 3,6	Conductividad superficie (μS/cm): 753 Conductividad fondo (μS/cm): 752 Conductividad TI (μS/cm): 567 Conductividad T2 (μS/cm): - -D.S. x 1,7- didad (m): - óxica (m): - Fecha de muestreo: 19/08/2005 Conductividad superficie (μS/cm): 1.023 Conductividad fondo (μS/cm): 1.289 Conductividad TI (μS/cm): 716 Conductividad T2 (μS/cm): -				
Ta superficie (°C): Ta fondo (°C): Ta TI (°C): Ta T2 (°C): Disco EI Termo Condiciones anó 4a CAMPAÑA Ta superficie (°C): Ta fondo (°C): Ta T1 (°C): Ta T2 (°C): Disco	15,56 15,15 18,32 Cauce seco de Secchi (m) 2,4 clina: No xicas: No Muestreador: 24,84 21,84 23,85 Cauce seco de Secchi (m) 2,1 clina: No	pH superficie (ud): 7,51 pH fondo (ud): 8,16 pH T1 (ud): 8,37 pH T2 (ud): - Transparencia Capa fótica (m) 4,1 Profun Grosor capa an Javier Ramírez pH superficie (ud): 8,13 pH fondo (ud): 7,44 pH T1 (ud): 8,25 pH T2 (ud): - Transparencia Capa fótica (m) 3,6	Conductividad superficie (μS/cm): 753 Conductividad fondo (μS/cm): 752 Conductividad TI (μS/cm): 567 Conductividad T2 (μS/cm): - -D.S. x 1,7- didad (m): - fecha de muestreo: 19/08/2005 Conductividad superficie (μS/cm): 1.023 Conductividad fondo (μS/cm): 1.289 Conductividad TI (μS/cm): 716 Conductividad T2 (μS/cm): -				

CARACTERÍSTICAS QUÍMICAS Y BIOLÓGICAS: (Datos referidos a la estación de presa -EI-)

I ^a CAMPAÑA Fecha de muestreo: 21/08/2004						
1 CAITI ANA		,	DIGO DEL P			RFO
PARÁMETRO	UNIDAD	RIEIS	RIEIT	RIEIF	RITI	RIT2
PROFUNDIDAD	m	, KIEI3	14	20	KIII	KIIZ
FÓSFORO TOTAL	mg P/I	0,074	0,082	0,048	0,141	
FOSFATOS	mg P/I	0,015	0,012	0,022	0,064	
NITRÓGENO KJELDAHL	mg N/I	0,65	1,03	0,65	0,86	
AMONIO TOTAL	mg N/I	0,05	0,09	0,10	0,16	_
NITRATOS	mg N/I	1,79	1,93	2,11	2,53	_
NITRITOS	mg N/I	0,072	0,070	0,090	0,029	_
CLOROFILA a	µg/l	16,1			-,	
N° DE CÉLULAS TOTALES	րջ/։ n° cel/ml	6.898				
CLASE PREDOMINANTE:	Cianobacter		N° celula	s/ml: 2.667		
ESPECIE PREDOMINANTE:	Oscillatoria li			s/ml: 2.630		
2ª CAMPAÑA		Fech	a de muest	reo: 15/12	/2004	
PARÁMETRO	UNIDAD	RIEIS	RIEIM	RIEIF	RITI	RIT2
PROFUNDIDAD		KIE IS	II	21	NH	NI I Z
FÓSFORO TOTAL	m mg P/I	0,063	0,076	0,056	0,143	0,022
FOSFATOS	•	0,040	0,042	0,039	0,097	0,006
NITRÓGENO KJELDAHL	mg P/I	0,53	0,61	0,74	0,72	0,46
	mg N/I	0,08	0,09	0,09	0,10	0,01
AMONIO TOTAL NITRATOS	mg N/I	2,72	2,72	2,74	1,99	1,06
	mg N/I	0,070	0,071	0,070	0,077	0,007
NITRITOS CLOROFILA a	mg N/I	3,4	0,071	0,070	0,077	0,007
	µg/l n° cel/ml	1.430				
N° DE CÉLULAS TOTALES CLASE PREDOMINANTE:	Criptofícea	1.430	Nº celula	s/ml: 676		
ESPECIE PREDOMINANTE:	Rhodomonas	minuta		s/ml: 596		
3ª CAMPAÑA		Fool			3/2005	
PARÁMETRO	LINIDAD	RIEIS	na de muest	RIEIF		RIT2
	UNIDAD	KIEI3	RIEIM I I	21	RITI	KIIZ
PROFUNDIDAD	m D/I	0,037	0,036	0,034	0,138	
FÓSFORO TOTAL FOSFATOS	mg P/I	0,037	0,023	0,034	0,086	_
	mg P/I	0,90	0,89	0,023	0,97	
NITRÓGENO KJELDAHL AMONIO TOTAL	mg N/I	0,06	0,06	0,06	0,07	_
NITRATOS	mg N/I	2,37	2,38	2,51	1,46	_
NITRATOS	mg N /l	0,045	0,047	0,044	0,061	_
	mg N/I	5,7	0,047	0,011	0,001	
CLOROFILA a	µg/l n° cel/ml	1.858				
N° DE CÉLULAS TOTALES CLASE PREDOMINANTE:	Criptofícea	1.030	Nº celula	ıs/ml: 906		
ESPECIE PREDOMINANTE:	Rhodomonas	minuta		ıs/ml: 671		
4ª CAMPAÑA		East	na de muest		3/2005	
4ª CAMPAÑA PARÁMETRO	UNIDAD	RIEIS	RIEIM	RIEIF		RIT2
PROFUNDIDAD		KIEI3	16	28	RITI	KI I Z
FÓSFORO TOTAL	m P/I	0,033	0,038	0,091	0,096	
FOSFATOS	mg P/I mg P/I	0,033	0,030	0,071	0,077	_
NITRÓGENO KJELDAHL		1,03	0,45	0,89	0,59	
AMONIO TOTAL	mg N/I mg N/I	0,05	0,14	0,50	0,05	_
NITRATOS	mg N/I mg N/I	1,41	1,40	1,57	2,50	_
NITRITOS	•	0,098	0,105	0,134	0,029	_
	mg N/I	1,3	-,	5,13 ₹	-,/	
CLOROFILA a N° DE CÉLULAS TOTALES	µg/l n° cel/ml	11.826				
	ii cei/iiii					
CLASE PREDOMINANTE:	Clorofícea		N° celula	s/ml: 11.33	8	

ADICIONAL INFORME EMBALSE DE RIBARROJA 2004-2005

Durante el año 2022 se han revisado los datos del embalse de Ribarroja recopilados durante los años 2004 y 2005, en aplicación del Real Decreto 817/2015, de 11 de septiembre, por el que se establecen los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental, a partir de la trasposición de la Directiva Marco del Agua (DMA).

La metodología utilizada ha consistido en obtener del informe de dicho año los datos necesarios para estimar de nuevo el estado trófico y el potencial ecológico y, recalcular el valor correspondiente en cada variable y en el estado final del embalse, utilizando las métricas publicadas en 2015, lo que permite comparar el estado de los embalses en un ciclo interanual de forma homogénea.

En cada apartado considerado se indica la referencia del apartado del informe original al que se refiere este trabajo adicional.

1. ESTADO TRÓFICO

Para evaluar el grado de eutrofización o estado trófico de una masa de agua se aplican e interpretan una serie de indicadores de amplia aceptación. En cada caso, se ha tenido en cuenta el valor de cada indicador en función de las características limnológicas básicas de los embalses. Así, se han podido interpretar las posibles incoherencias entre los diversos índices y parámetros y establecer la catalogación trófica final en función de aquellos que, en cada caso, responden a la eutrofización de las aguas.

Dentro del presente estudio se han considerado los siguientes índices y parámetros:

a) Concentración de nutrientes. Fósforo total (PT)

La concentración de fósforo total en el epilimnion del embalse es un parámetro decisivo en la eutrofización ya que suele ser el factor limitante en el crecimiento y reproducción de las poblaciones algales o producción primaria. De entre los índices conocidos, se ha adoptado en el presente estudio, el utilizado por la Organización para la Cooperación y el Desarrollo Económico (OCDE) resumido en la tabla A1, ya que es

el que mejor refleja el grado trófico real en los casos estudiados y además es el de más amplio uso a nivel mundial y en particular en la Unión Europea (UE), España y la propia Confederación Hidrográfica del Ebro (CHE). Desde 1984 se demostró que los criterios de la OCDE, que relacionan la carga de nutrientes con las respuestas de eutrofización, eran válidos para los embalses españoles.

Tabla A1. Niveles de calidad según la concentración de fósforo total.

Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración PT (µg					
P/L)	0-4	4-10	10-35	35-100	>100

b) Fitoplancton (Clorofila a, densidad algal)

A diferencia del anterior, el fitoplancton es un indicador de respuesta trófica y, por lo tanto, integra todas las variables causales, de modo que está influido por otros condicionantes ambientales además de estarlo por los niveles de nutrientes. Se utilizan dos parámetros como estimadores de la biomasa algal en los índices: concentración de clorofila a en la zona fótica (µg/L) y densidad celular (nº células/ml).

Al contar en este estudio mayoritariamente con sólo una campaña de muestreo, y por tanto no contar con una serie temporal que nos permitiera la detección del máximo anual, se utilizaron las clases de calidad relativas a la media anual (tabla A2). La utilización de los límites de calidad relativos a la media anual de clorofila se basó en el hecho de que los muestreos fueron realizados durante la estación de verano. Según la bibliografía limnológica general, el verano coincidiría con un descenso de la producción primaria motivado por el agotamiento de nutrientes tras el pico de producción típico de finales de primavera. Por ello, la utilización de los límites o rangos relativos al máximo anual resultaría inadecuada.

Para la densidad celular, basamos nuestros límites de estado trófico en la escala logarítmica basada en los estudios limnológicos de Margalef, ya utilizada para incluir más clases de estado trófico en otros estudios (tabla A2). Estos resultados se ajustaban de forma más aproximada a los obtenidos mediante otras métricas estándar de la OCDE como las de P total o clorofila. En el presente estudio, los índices elegidos son los siguientes:

Tabla A2. Niveles de calidad según la clorofila *a* y la densidad algal del fitoplancton.

Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Clorofila a (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad (cél./ml)	<100	100-1000	1000-10000	10000-100000	>100000

c) Transparencia de la columna de agua. Disco de Secchi (DS)

Por su parte, la transparencia, medida como profundidad de visibilidad del disco de Secchi (media y mínimo anual en m), está también íntimamente relacionada con la biomasa algal, aunque más indirectamente, ya que otros factores como la turbidez debida a sólidos en suspensión, o los fenómenos de dispersión de la luz que se producen en aguas carbonatadas, afectan a esta variable.

Se utilizaron las clases de calidad relativas al mínimo anual de transparencia según criterios OCDE. Se utilizaron en este caso los rangos relativos al mínimo anual (tabla A3) debido a varios factores: por un lado, la transparencia en embalses es generalmente menor que en lagos; por otro lado, en verano se producen resuspensiones de sedimentos como consecuencia de los desembalses para regadío, y por último, la mayoría de los embalses muestreados son de aguas carbonatadas, con lo que la profundidad de Secchi subestimaría también la transparencia.

Tabla A3. Niveles de calidad según la transparencia.

Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Disco Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7

Catalogación trófica final

Se han considerado la totalidad de los índices expuestos, que se especifican en la tabla A4, estableciéndose el estado trófico global de los embalses estudiados según la metodología descrita a continuación, utilizando el valor promedio de los dos muestreos en su caso.

Tabla A4. Resumen de los parámetros indicadores de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración PT (μg	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cél./ml)	<100	100-1000	1000-10000	10000-100000	>100000

Sobre la base de esta propuesta, en la tabla A5 se incluye la catalogación de las diferentes masas de agua por parámetro. Así, para cada uno de los embalses, se asignó un valor numérico (de 1 a 5) según cada clase de estado trófico.

Tabla A5. Valor numérico asignado a cada clase de estado trófico.

ESTADO TRÓFICO	VALORACIÓN
Ultraoligotrófico	1
Oligotrófico	2
Mesotrófico	3
Eutrófico	4
Hipereutrófico	5

La valoración del estado trófico global final se calculó mediante la *media* de los valores anteriores, re-escalada a cinco rangos de estado trófico (es decir, el intervalo 1-5, de 4 unidades, dividido en 5 rangos de 0,8 unidades de amplitud).

2. ESTADO DE LA MASA DE AGUA

El **estado** de una masa de agua es el grado de alteración que presenta respecto a sus condiciones naturales, y viene determinado por el *peor valor* de su estado ecológico y químico.

- El <u>estado ecológico</u> es una expresión de la calidad de la estructura y el funcionamiento de los ecosistemas acuáticos asociados a las aguas superficiales en relación con las condiciones de referencia (es decir, en ausencia de alteraciones). En el caso de los embalses se denomina *potencial ecológico* en lugar de estado ecológico. Se determina a partir de indicadores de calidad (biológicos y fisicoquímicos).

 El <u>estado químico</u> de las aguas es una expresión de la calidad de las aguas superficiales que refleja el grado de cumplimiento de las normas de calidad ambiental de las sustancias prioritarias y otros contaminantes.

2.1. POTENCIAL ECOLÓGICO

2.1.1. INDICADORES DE CALIDAD BIOLÓGICOS: FITOPLANCTON

Como consecuencia de la aprobación de la IPH (Instrucción de Planificación Hidrológica, Orden ARM/2656/2008), se ha realizado una aproximación al <u>potencial ecológico</u> para el elemento de calidad <u>fitoplancton</u> denominada *propuesta normativa*. En ella se establecen las condiciones de máximo potencial para los siguientes parámetros: clorofila a, biovolumen, Índice de Grupos Algales (IGA) y porcentaje de cianobacterias, en función de la tipología del embalse.

Se debe seguir el procedimiento descrito en el Protocolo MFIT-2013 Versión 2 para el cálculo del RCE de cada uno de los cuatro parámetros:

- Cálculo de Ratio de Calidad Ecológico (RCE)

Cálculo para clorofila a:

RCE= [(1/Chla Observado) / (1/Chla Máximo Potencial Ecológico)]

Cálculo para biovolumen:

RCE= [(1/biovolumen Observado) / (1/ biovolumen Máximo Potencial Ecológico)]

Cálculo para el Índice de Grupos Algales (IGA):

RCE= [(400-IGA Observado) / (400- IGA Máximo Potencial Ecológico)]

Cálculo para el porcentaje de cianobacterias:

RCE= [(100 - % cianobacterias Observado) / (100 - % cianobacterias Máximo Potencial Ecológico)]

1) Concentración de clorofila a

Del conjunto de pigmentos fotosintetizadores de las microalgas de agua dulce, la clorofila a se emplea como un indicador básico de biomasa fitoplanctónica. Todos los grupos de microalgas contienen clorofila a como pigmento principal, pudiendo llegar a

representar entre el 1 y el 2 % del peso seco total. La clasificación del potencial ecológico de acuerdo con la concentración de clorofila *a* se indica en la tabla A6.

Tabla A6. Clases de potencial ecológico según el RCE de la concentración de clorofila a.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango <i>Tipos 1, 2 y 3</i>	> 0,211	0,210 - 0,14	0,13 - 0,07	< 0,07
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,433	0,432 - 0,287	0,286 - 0,143	< 0,143
Rango <i>Tipo 12</i>	> 0,195	0,194 – 0,13	0,12 - 0,065	< 0,065
Rango <i>Tipo 13</i>	> 0,304	0,303 - 0,203	0,202 - 0,101	< 0,101
Valoración de cada clase	2	3	4	5

2) Biovolumen algal

El biovolumen es una medida mucho más precisa de la biomasa algal, por tener en cuenta el tamaño o volumen celular de cada especie, además del número de células. La clasificación del potencial ecológico de acuerdo al biovolumen de fitoplancton se indica en la tabla A7.

Tabla A7. Clases de potencial ecológico según el RCE del biovolumen algal del fitoplancton.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,189	0,188 - 0,126	0,125 - 0,063	< 0,063
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,362	0,361 – 0,24	0,23 - 0,12	< 0,12
Rango Tipo 12	> 0,175	0,174 – 0,117	0,116 – 0,058	< 0,058
Rango Tipo 13	> 0,261	0,260 - 0,174	0,173 – 0,087	< 0,087
Valoración de cada clase	2	3	4	5

3) Índice de grupos algales (IGA)

Se ha aplicado un índice basado en el biovolumen relativo de diferentes grupos algales del fitoplancton, denominado *IGA*, y que viene siendo utilizado por CHE desde 2010.

El índice IGA se expresa:

$$Iga = \frac{1 + 0.1*Cr + Cc + 2*(Dc + Chc) + 3*Vc + 4*Cia}{1 + 2*(D + Cnc) + Chnc + Dnc}$$

Siendo,

Cr	Criptófitos	Cia	Cianobacterias
Cc	Crisófitos coloniales	D	Dinoflageladas
Dc	Diatomeas coloniales	Cnc	Crisófitos no coloniales
Chc	Clorococales coloniales	Chnc	Clorococales no coloniales
Vc	Volvocales coloniales	Dnc	Diatomeas no coloniales

En cuanto al *IGA*, se han considerado los rangos de calidad establecidos en la tabla A8.

Tabla A8. Clases de potencial ecológico según el RCE del Índice de Grupos Algales (IGA).

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,974	0,973 - 0,649	0,648 - 0,325	< 0,325
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,982	0,981 – 0,655	0,654 - 0,327	< 0,327
Rango Tipo 12	> 0,929	0,928 - 0,619	0,618 – 0,31	< 0,31
Rango <i>Tipo 13</i>	> 0,979	0,978 - 0,653	0,652 - 0,326	< 0,326
Valoración de cada clase	2	3	4	5

4) Porcentaje de cianobacterias

El aumento de la densidad relativa de cianobacterias se ha relacionado en numerosas ocasiones con procesos de eutrofización.

Para el cálculo del porcentaje de cianobacterias se ha utilizado el procedimiento descrito en el Protocolo de análisis y cálculo de métricas de fitoplancton en lagos y embalses Versión 2 (MAGRAMA, 2016). Se aplica para el cálculo la siguiente fórmula:

$$\%CIANO = \frac{\text{BVOLcia} - \left[\text{BVOLchr} - \left(\text{BVOLmic} + \text{BVOLwor}\right)\right]}{BVOL_{TOT}}$$

Donde: BVOL_{CIA} Biovolumen de cianobacterias totales

BVOL_{CHR} Biovolumen de Chroococcales

BVOL_{MIC} Biovolumen de *Microcystis*

BVOLWOR Biovolumen de Woronichinia

BVOL_{TOT} Biovolumen total de fitoplancton

Los valores de cambio de clases se establecen como se muestran en la tabla A9.

Tabla A9. Clases de potencial ecológico según el RCE del porcentaje de cianobacterias.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,908	0,907 - 0,607	0,606 - 0,303	< 0,303
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,715	0,714 - 0,48	0,47 - 0,24	< 0,24
Rango <i>Tipo 12</i>	> 0,686	0,685 - 0,457	0,456 - 0,229	< 0,229
Rango <i>Tipo 13</i>	> 0,931	0,930 - 0,621	0,620 - 0,31	< 0,31
Valoración de cada clase	2	3	4	5

Posteriormente, es necesario llevar a cabo la *transformación de los valores de RCE obtenidos* a una escala numérica equivalente para los cuatro indicadores (RCEtrans). Las ecuaciones varían en función del tipo de embalse.

Tipos 1, 2 y 3

Clorofila a	
RCE>0,21	RCE _{trans} = 0,5063 x RCE + 0,4937
RCE ≤0,21	RCE _{trans} = 2,8571 x RCE
NOL 30,21	NCLtrans - 2,0371 X NCL

Biovolumen	
RCE >0,19	RCE _{trans} = 0,4938 x RCE + 0,5062
RCE ≤0,19	RCE _{trans} = 3,1579 x RCE

% Cianobacterias	
RCE >0,91	RCE _{trans} = 4,4444 x RCE - 3,4444
RCE ≤0,91	RCE _{trans} = 0,6593 x RCE

Índice de Grupos Algales (IGA)	
RCE >0,9737	RCE _{trans} = 15,234 x RCE - 14,233
RCE ≤0,9737	RCE _{trans} = 0,6162 x RCE

Tipos 7, 8, 9, 10 y 11

Clorofila a	
RCE>0,43	RCE _{trans} = 0,7018 x RCE + 0,2982
RCE ≤0,43	RCE _{trans} = 1,3953 x RCE

Biovolumen	
RCE >0,36	RCE _{trans} = 0,625 x RCE + 0,375
RCE ≤0,36	RCE _{trans} = 1,6667 x RCE

% Cianobacterias	
RCE >0,72	RCE _{trans} = 1,4286 x RCE - 0,4286
RCE ≤0,72	RCE _{trans} = 0,8333 x RCE

Índice de Grupos Algales (IGA)	
RCE >0,9822	RCE _{trans} = 22,533 x RCE - 21,533
RCE ≤0,9822	RCE _{trans} = 0,6108 x RCE

Tipos 6 y 12

Clorofila a	
RCE >0,195	RCE _{trans} =0,497x RCE + 0,503
RCE ≤ 0,195	RCE _{trans} = 3,075 x RCE

	Biovolumen	
	RCE > 0,175	RCE _{trans} = 0,4851 x RCE + 0,5149
Γ	RCE ≤ 0,175	RCE _{trans} = 3,419 x RCE

% Cianobacterias	
RCE > 0,686	RCE _{trans} = 1,2726x - 0,2726
RCE ≤ 0,686	RCE _{trans} = 0,875 x RCE

Índice de Grupos Algales (IGA)	
RCE > 0,929	$RCE_{trans} = 5,6325x - 4,6325$
RCE ≤ 0,929	RCE _{trans} = 0,6459 x RCE

Tipo 13

Clorofila a		
RCE > 0,304	RCE _{trans} = 0,575 x RCE + 0,425	
RCE ≤ 0,304	RCE _{trans} = 1,9714 x RCE	

Biovolumen		
RCE > 0,261	RCE _{trans} = 0,541x RCE + 0,459	
RCE ≤ 0,261	RCE _{trans} = 2,3023 x RCE	

% Cianobacterias		
RCE > 0,931 RCE _{trans} = 5,7971 x RCE - 4,7971		
R	CE ≤ 0,931	RCE _{trans} = 0,6445 x RCE

Índice de Grupos Algales (IGA)		
RCE > 0,979 RCE _{trans} = 18,995 x RCE - 17,995		
$RCE \le 0.979$ $RCE_{trans} = 0.6129 \times RCE$		

Para la combinación de los distintos indicadores representativos del elemento de calidad fitoplancton se hallará la *media* de los RCE transformados correspondientes a los parámetros "abundancia-biomasa" y "composición". La combinación de los RCE transformados se llevará a cabo primero para los indicadores de clorofila y biovolumen, ambos representativos de la <u>abundancia</u>. La combinación se hará mediante las *medias* de los RCE transformados.

Posteriormente se llevará a cabo la combinación de los indicadores representativos de la <u>composición</u>: porcentaje de cianobacterias y el IGA. La combinación se hará mediante las *medias* de los RCE transformados. Finalmente, para la combinación de los indicadores de composición y abundancia-biomasa se hará la *media aritmética*.

El valor final de la combinación de los RCE transformados se clasificará de acuerdo a la siguiente escala de la tabla A10:

Tabla A10. Ratios de calidad según el índice de potencial ecológico normativo RCEtrans.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
RCEtrans	> 0,6	0,4-0,6	0,2-0,4	<0,2
Valoración de cada clase	2	3	4	5

Tabla A11. Valores de referencia propios del tipo (VR_t) y límites de cambio de clase de potencial ecológico (B⁺/M, Bueno o superior-Moderado; M/D, Moderado-Deficiente; D/M, Deficiente-Malo) de los indicadores de los elementos de calidad de embalses (*RD 817/2015*). Se han incluido sólo los tipos de embalses presentes en el ESTUDIO.

Tipo	Elemento	Parámetro	Indicador	VRt	B⁺/M (RCE)	M/D (RCE)	D/M (RCE)
		Diamasa	Clorofila a mg/m ³	2,00	0,211	0,14	0,07
		Biomasa	Biovolumen mm ³ /L	0,36	0,189	0,126	0,063
Tipo 1	Fitoplancton		Índice de Catalán (IGA)	0,10	0,974	0,649	0,325
		Composición	Porcentaje de cianobacterias	0,00	0,908	0,607	0,303
		5.	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
		Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 7	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Diamaga	Clorofila a mg/m³	2,60	0,433	0,287	0,143
		Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 9	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
	Composición	Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Diaman	Clorofila a mg/m³	2,60	0,433	0,287	0,143
		Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 10	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Diaman	Clorofila a mg/m³	2,60	0,433	0,287	0,143
		Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 11	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
			Clorofila a mg/m ³	2,40	0,195	0,13	0,065
		Biomasa	Biovolumen mm ³ /L	0,63	0,175	0,117	0,058
Tipo 12	Fitoplancton		Índice de Catalán (IGA)	1,50	0,929	0,619	0,31
		Composición	Porcentaje de cianobacterias	0,10	0,686	0,457	0,229
		D:	Clorofila a mg/m ³	2,10	0,304	0,203	0,101
		Biomasa	Biovolumen mm ³ /L	0,43	0,261	0,174	0,087
Tipo 13	Fitoplancton		Índice de Catalán (IGA)	1,10	0,979	0,653	0,326
		Composición	Porcentaje de cianobacterias	0,00	0,931	0,621	0,31

2.1.2. INDICADORES DE CALIDAD FISICOQUÍMICOS

Todavía la normativa no ha desarrollado qué indicadores fisicoquímicos se emplean en embalses, pero por similitud con los que se recogen para lagos (Real Decreto 817/2015) se utilizan los siguientes:

1) Transparencia

La transparencia es un elemento válido para evaluar el grado trófico del embalse; tiene alta relación con la productividad biológica; y además tiene rangos establecidos fiables y de utilidad para el establecimiento de los límites de clase del potencial ecológico. Se ha evaluado a través de la profundidad de visión del disco de Secchi (DS), considerando su valor para la obtención de las distintas clases de potencial (tabla A12).

Tabla A12. Clases de potencial ecológico según la profundidad de visión del Disco de Secchi.

Clase de potencial ecológico	Muy Bueno	Bueno	Moderado
Disco de Secchi (DS, m)	> 6	6 - 3	< 3
Valoración de cada clase	1	2	3

2) Condiciones de oxigenación

Representa un parámetro secundario de la respuesta trófica que viene a indicar la capacidad del sistema para asimilar la materia orgánica autóctona, generada por el propio sistema a través de los productores primarios en la capa fótica, y la materia orgánica alóctona, es decir, aquella que procede de fuentes externas al sistema, como la procedente de focos de contaminación puntuales o difusos.

Se ha evaluado estimando la reserva media de oxígeno hipolimnético en el periodo de muestreo, correspondiente al periodo de estratificación. En el caso de embalses no estratificados se consideró la media de oxígeno en toda la columna de agua. Las clases consideradas han sido las correspondientes a la concentración de oxígeno en la columna de agua; parámetro vital para la vida piscícola. En la tabla A13 se resumen los límites establecidos.

Tabla A13. Clases de potencial ecológico según la concentración de oxígeno disuelto en el hipolimnion o en toda la columna de agua, cuando el embalse no está estratificado.

Clase de potencial ecológico	Muy Bueno	Bueno	Moderado
Concentración hipolimnética (mg/L O ₂)	> 8	8 - 6	< 6
Valoración de cada clase	1	2	3

3) Concentración de nutrientes

En este caso se ha seleccionado el fósforo total (PT), ya que su presencia a determinadas concentraciones en un embalse acarrea procesos de eutrofización, pues en la mayoría de los casos es el principal elemento limitante para el crecimiento de las algas.

Se ha empleado el resultado obtenido en la muestra integrada, considerando los criterios de la OCDE especificados en la tabla A14 (OCDE, 1982) adaptado a los intervalos de calidad del RD 817/2015.

Tabla A14. Clases de potencial ecológico según la concentración de fósforo total.

Clase de potencial ecológico	Muy Bueno	Bueno	Moderado
Concentración de PT (µg P/L)	0 - 4	4 -10	> 10
Valoración de cada clase	1	2	3

Si se toman varios datos anuales, se hace la *mediana* de los valores anuales.

Posteriormente se elige el *peor valor* de los tres indicadores (transparencia, condiciones de oxigenación y fósforo total).

4) Sustancias preferentes y contaminantes específicos de cuenca

Dentro de los indicadores fisicoquímicos también se tienen en cuenta las **sustancias preferentes y contaminantes específicos de cuenca.** El valor medio de los datos anuales se revisa para ver si *cumple* o no con la Norma de Calidad Ambiental (NCA) del Anexo V del RD 817/2015. Si incumple supone asignarle para los indicadores fisicoquímicos la categoría de moderado.

Tabla A15. Clases de potencial ecológico para sustancias preferentes y contaminantes específicos de cuenca.

Clase de potencial ecológico	Muy Bueno	Moderado
Sustancias preferentes y contaminantes específicos de cuenca	Cumple NCA	No cumple NCA
Valoración de cada clase	2	3

El <u>potencial ecológico</u> resulta del *peor valor* entre los indicadores biológicos y fisicoquímicos.

Tabla A16. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico
Bueno o superior	Muy bueno	Bueno o superior
Bueno o superior	Bueno	Bueno o superior
Bueno o superior	Moderado	Moderado
Moderado		Moderado
Deficiente	Indistinto	Deficiente
Malo		Malo

2.2. ESTADO QUÍMICO

El <u>estado químico</u> es "no bueno" cuando hay algún incumplimiento de la Norma de Calidad Ambiental, bien sea como media anual (NCA_MA), como máximo admisible (NCA_CMA) o en la biota (NCA_biota) para las **sustancias prioritarias y otros contaminantes**. Las NCA se recogen en el *Anexo IV del RD 817/2015*.

Tabla A17. Clases de estado químico para sustancias prioritarias y otros contaminantes.

Clase de estado químico	Bueno	No alcanza el buen estado
Sustancias prioritarias y otros contaminantes	Cumple NCA	No cumple NCA
Valoración de cada clase	2	3

2.3. ESTADO

El <u>estado</u> de la masa de agua es el *peor valor* entre su potencial ecológico y su estado químico.

Tabla A18. Determinación del estado.

Estado	Estado Químico				
Potencial Ecológico	Bueno No alcanza el buen estad				
Bueno o superior	Bueno				
Moderado	Inferior a bueno				
Deficiente	Inferior a bueno				
Malo					

DIAGNÓSTICO DEL ESTADO TRÓFICO DEL EMBALSE DE RIBARROJA

Se han considerado los indicadores especificados en la tabla A19 para los valores medidos en el embalse, estableciéndose el estado trófico global del embalse según la metodología descrita.

Tabla A19. Parámetros indicadores y rangos de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración P (µg P /L)	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cél./ml)	<100	100-1000	1000-10000	10000-100000	>100000
VALOR PROMEDIO	< 1,8	1,8 – 2,6	2,6 - 3,4	3,4 - 4,2	> 4,2

En la tabla A20a se incluye el estado trófico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según la valoración de este estado trófico final para la campaña de muestreo de 2004.

Tabla A20a. Diagnóstico del estado trófico del embalse de Ribarroja 2004.

INDICADOR	VALOR	ESTADO TRÓFICO
CONCENTRACIÓN P TOTAL	7,00	Oligotrófico
DISCO SECCHI	1,40	Eutrófico
CLOROFILA a	16,10	Eutrófico
DENSIDAD ALGAL	6898	Mesotrófico
ESTADO TRÓFICO FINAL	3,25	MESOTRÓFICO

Atendiendo a los criterios seleccionados, la concentración de P total ha clasificado el embalse como oligotrófico; la transparencia como eutrófico; la concentración de clorofila *a* como eutrófico y la densidad algal como mesotrófico. Combinando todos los indicadores, el estado trófico final para el embalse de Ribarroja en 2005 ha resultado ser **MESOTRÓFICO**.

En la tabla A20b se incluye el estado trófico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según la valoración de este estado trófico final para la campaña de muestreo de 2005.

Tabla A20b. Diagnóstico del estado trófico del embalse de Ribarroja 2005.

INDICADOR	VALOR	ESTADO TRÓFICO
CONCENTRACIÓN P TOTAL	33,00	Mesotrófico
DISCO SECCHI	2,10	Mesotrófico
CLOROFILA a	1,30	Oligotrófico
DENSIDAD ALGAL	11826	Eutrófico
ESTADO TRÓFICO FINAL	3,00	MESOTRÓFICO

Atendiendo a los criterios seleccionados, la concentración de P total ha clasificado el embalse como mesotrófico; la transparencia como mesotrófico; la concentración de clorofila *a* como oligotrófico y la densidad algal como eutrófico. Combinando todos los indicadores, el estado trófico final para el embalse de Ribarroja en 2004 ha resultado ser **MESOTRÓFICO**.

DIAGNÓSTICO DEL ESTADO FINAL DEL EMBALSE DE RIBARROJA

En la mayoría de los casos en lugar del estado de la masa, sólo se puede establecer el potencial ecológico (además sin tener en cuenta la presencia de sustancias preferentes y contaminantes específicos de cuenca, para los indicadores fisicoquímicos). Tampoco se han estudiado las sustancias prioritarias y otros contaminantes que permitan determinar el estado químico, por eso se diagnostica la masa con el **potencial ecológico**.

Se han considerado los indicadores, los valores de referencia y los límites de clase B+/M (Bueno o superior/Moderado), M/D (Moderado/Deficiente) y D/M (Deficiente/Malo), así como sus ratios de calidad ecológica (RCE), especificados en las tablas A21 y A22.

Tabla A21. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo.

			RANGOS DEL RCE					
Indicador	Elementos	Parámetros	Bueno o superior		Moderado	Deficiente	Malo	
		Clorofila <i>a</i> (μg/L)	≥ 0,433		0,432 – 0,287	0,286 – 0,143	< 0,143	
Biológico	Fitoplancton	Biovolumen algal (mm³/L)	≥ 0,362		362 0,361 – 0,24		< 0,12	
		Índice de Catalán (IGA)	≥ 0,	982	982 0,981 – 0,655		< 0,327	
		Porcentaje de cianobacterias	≥ 0,	715	0,714 - 0,48	0,47 - 0,24	< 0,24	
	Bueno o superior		Moderado	Deficiente	Malo			
INDICADOR BIOLÓGICO			> 0,6		0,4 - 0,6	0,2 - 0,4	< 0,2	
				R/	NGOS DE VAL	ORES		
Indicador	Elementos	Parámetros	Muy bueno	Bueno	Moderado	Deficiente	Malo	
	Transparencia	Disco de Secchi (m)	> 6	3 - 6	1,5 - 3	0,7 - 1,5	< 0,7	
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	> 8	8 - 6	6 - 4	4 - 2	< 2	
	Nutrientes	Concentración de PT (µg P/L)	0 - 4	4 4 - 10 10 - 35		35 - 100	> 100	
				Bueno		Moderado		
INDIC	INDICADOR FISICOQUÍMICO			1,6 – 2,4		> 2,4		

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico normativo sigue el esquema de decisiones indicado en la tabla A22.

Tabla A22. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico (PE)		
Bueno o superior	Muy bueno	Bueno o superior		
Bueno o superior	Bueno	Bueno o superior		
Bueno o superior	Moderado	Moderado		
Moderado		Moderado		
Deficiente	Indistinto	Deficiente		
Malo		Malo		

En la tabla A23a se incluye el potencial indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según el potencial ecológico, tras pasar el filtro del indicador fisicoquímico para el año 2004.

Tabla A23a. Diagnóstico del potencial ecológico del embalse de Ribarroja 2004.

Indicador	Elemento	s Parámetro	Indicador	Valor	RCE	RCET	PE
Biológico	Fitoplancto	n Biomasa	Clorofila a (µg/L)	16,10	0,15	0,46	Bueno o Superior
INDICADOR BIOLÓGICO					2	BUENO O SUPERIOR	
Indica	ador	Elementos	Indicador		Valor		PE
		Transparencia	Disco de Secchi (m)	1,40		Moderado	
Fisicoquímico		Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	6,78		Bueno	
		Nutrientes	Concentración de PT (µg P/L)		7,00		Bueno
INDICADOR FISICOQUÍMICO					3 MODERA		
POTENCIAL ECOLÓGICO				MODERADO			
ESTADO FINAL				INFERIOR A BUENO			

De acuerdo con los resultados obtenidos, el Estado Final del embalse de Ribarroja para el año 2004 es de nivel 3, **INFERIOR A BUENO**.

En la tabla A23b se incluye el potencial indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según el potencial ecológico, tras pasar el filtro del indicador fisicoquímico para el año 2005.

Tabla A23b. Diagnóstico del potencial ecológico del embalse de Ribarroja 2005.

Indicador	Elementos	Parámetro	Indicador	Valor	RCE	RCET	PE	
Biológico	Fitoplancto	n Biomasa	Clorofila a (µg/L)	1,30	1,85	1,59	Bueno o Superior	
INDICADOR BIOLÓGICO					2	BUENO O SUPERIOR		
Indica	ador	Elementos	Indicador		Valor		PE	
		Transparencia	Disco de Secchi (m)	2,10		Moderado		
Fisicoquími	со	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	3,79		Moderado		
		Nutrientes	Concentración de PT (µg P/L)	33,00		Moderado		
INDICADOR FISICOQUÍMICO					3 MODERAD			
POTENCIAL ECOLÓGICO				MODERADO				
ESTADO FINAL					INFE	RIOR A E	BUENO	

De acuerdo con los resultados obtenidos, el Estado Final del embalse de Ribarroja para el año 2005 es de nivel 3, **INFERIOR A BUENO**.