

EJECUCIÓN DE TRABAJOS RELACIONADOS CON LOS REQUISITOS DE LA DIRECTIVA MARCO (2000/60/CE) EN EL ÁMBITO DE LA CONFEDERACIÓN HIDROGRÁFICA DEL EBRO REFERIDOS A: ELABORACIÓN DEL REGISTRO DE ZONAS PROTEGIDAS, DETERMINACIÓN DEL POTENCIAL ECOLÓGICO DE LOS EMBALSES, DESARROLLO DE PROGRAMAS ESPECÍFICOS DE INVESTIGACIÓN

EMBALSE DE MANSILLA

ÍNDICE

	Página
1. INTRODUCCIÓN	1
2. DESCRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE	1
2.1. Ámbito geográfico	1
2.2. Características morfométricas e hidrológicas	2
2.3. Usos del agua	4
2.4. Registro de zonas protegidas	4
3. DESCRIPCIÓN DE LOS TRABAJOS REALIZADOS	5
4. DIAGNÓSTICO DE LA SITUACIÓN ACTUAL	7
4.1. Características físico-químicas de las aguas	7
4.2. Hidroquímica del embalse	9
4.3. Productores primarios y concentración de pigmentos fotosintetizadores	11
4.3.1. Cualidad bioindicadora	14
5. DIAGNÓSTICO DEL GRADO TRÓFICO	14
6. DEFINICIÓN DEL POTENCIAL ECOLÓGICO	15
ANEXO I. RESULTADOS FÍSICO QUÍMICOS	
ANEXO II. RESULTADOS QUÍMICOS	
ANEXO III. RESULTADOS BIOLÓGICOS	
REPORTAJE FOTOGRÁFICO	
APÉNDICE 1. FICHA DESCRIPTIVA DEL EMBALSE	

1. INTRODUCCIÓN

El presente documento recoge los resultados de los trabajos realizados en el embalse de Mansilla y la interpretación de los mismos, con una disposición temática similar para los 47 embalses estudiados, a efectos de proporcionar una referencia fija que facilite la consulta y explotación de la información contenida en ellos.

En general, se recurre a presentaciones gráficas y sintéticas de la información, acompañadas de un texto conciso, lo que permitirá una ágil y rápida consulta del documento. Los listados de datos analíticos se adjuntan en tres anexos que completan el presente documento. Por último, tras los anexos, se presenta un reportaje fotográfico que refleja el estado del embalse durante el periodo estudiado (años 2004-2005).

En apartados sucesivos se comentan los siguientes aspectos:

- Resultados del estudio en el embalse (FASE DE CARACTERIZACIÓN) de todos los aspectos tratados (hidráulicos, físico-químicos y biológicos), que culminan en el diagnóstico del grado trófico.
- Definición del "Potencial Ecológico", tras la aplicación de indicadores biológicos y físico-químicos propuestos en la Directiva Marco de Aguas.

2. DESCRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE

2.1. Ámbito geográfico

La cuenca vertiente al embalse de Mansilla está situada en la región de las Sierras de la Demanda y Urbión, pertenecientes al dominio geológico de las Cadenas Ibéricas Occidentales y situadas al sur de la gran fosa o cubeta tectónica del Terciario del Valle del Ebro.

El embalse, cuya presa fue terminada en 1.960, se sitúa en la localidad de del mismo nombre, en la comunidad autónoma de La Rioja. Regula principalmente las aguas del río Najerilla, aunque también las de otros ríos y arroyos de menor entidad, entre los que

destacan el río Portillo, por la margen derecha, y los ríos Cambrones y Gatón, por la margen izquierda.

2.2. Características morfométricas e hidrológicas

Se trata de un embalse de moderadas dimensiones, alargado y que no presenta grandes variaciones en el eje longitudinal, exceptuando el brazo que, por margen derecha, conforma el río Portillo.

La cuenca vertiente al embalse de Mansilla tiene una superficie total de 23 250,21 ha, de las cuales 11 074 ha corresponden a la cuenca de escorrentía directa.

El embalse tiene una extensión de 246 ha en su máximo nivel normal y una capacidad total de 67,7 hm³. Tiene una profundidad media de 28 m, mientras que la profundidad máxima alcanza los 70 m. En el cuadro I se presentan las características morfométricas del embalse y de las subcuencas.

Cuadro I: Características morfométricas del embalse y subcuencas

Superficie de la cuenca total (ha)	23 250,21
Superficie de la cuenca parcial (ha)	23 250,21
Superficie de la subcuenca de escorrentía (ha)	11 074
Superficie del embalse (ha)	246
Longitud máxima del embalse (km)	6,3
Capacidad total (hm³)	67,7
Capacidad útil (hm³)	-
Profundidad máxima (m)	70
Profundidad media (m)	28
Perímetro en máximo nivel (km)	14
Cota máximo nivel embalsado (msnm)	930
Cota(s) de la toma(s) de agua principal(es) (msnm)	925,5;880

Se trata de un embalse monomíctico¹, típico de zonas templadas. La termoclina en el periodo estival se sitúa entre 9 y 10 metros de profundidad. La capa fótica en el estío ronda los 10 metros de espesor.

En el **cuadro II** se presentan las medias mensuales de la explotación hidráulica correspondientes al periodo 2001-2005.

Cuadro II: Parámetros hidráulicos mensuales. Periodo 2001-2005

	BALANCE HIDRÁULICO MENSUAL									
Periodo	Volumen	Entradas Totales	Ts	Te						
2001-2005	Hm³	Hm³	Hm³	años	años					
Octubre	20,53	8,70	6,98	0,20	0,25					
Noviembre	24,35	4,50	11,75	0,44	0,17					
Diciembre	34,73	9,78	18,98	0,30	0,16					
Enero	40,38	16,85	20,95	0,20	0,16					
Febrero	43,13	15,98	17,93	0,21	0,18					
Marzo	47,44	13,30	20,33	0,30	0,20					
Abril	54,59	11,40	17,00	0,39	0,26					
Mayo	58,46	16,03	17,70	0,31	0,28					
Junio	57,59	12,33	8,78	0,38	0,54					
Julio	49,48	18,08	8,05	0,23	0,52					
Agosto	37,25	20,88	7,85	0,15	0,40					
Septiembre	26,91	16,08	16,08 7,45		0,30					
Total anual	41,23	163,88	163,73	0,25	0,25					

El tiempo de residencia anual del agua es moderado, en torno a 3 meses. El máximo tiempo de residencia -6,5 meses- se da en el mes de julio considerando las entradas, mientras que el mínimo -1,7 meses- se localiza en septiembre y calculado a partir de las salidas.

_

Significa que presenta un único ciclo anual de mezcla-estratificación vertical.

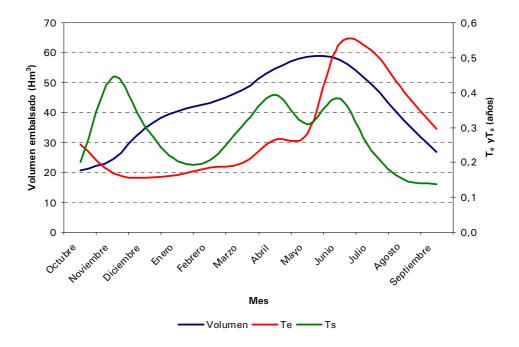


Figura 1: Volumen embalsado y tiempo de retención del agua

2.3. Usos del agua

Las aguas del embalse se destinan principalmente al riego, al abastecimiento y a la producción hidroeléctrica. A su vez, en el embalse se realizan actividades recreativas, pesca y navegación principalmente.

2.4. Registro de zonas protegidas

El embalse de Mansilla forma parte del Registro de Zonas Protegidas elaborado por la Confederación Hidrográfica del Ebro, en contestación al artículo 6 de la Directiva Marco del Agua, dentro de las siguientes categorías:

- Zonas de extracción para consumo humano: El embalse de Mansilla suministra agua a una población de 461 habitantes. El titular de la captación es el ayuntamiento de Hormilla.
- Zonas de protección de habitats o especies: El embalse de Mansilla forma parte del LIC y la ZEPA ES0000067 "Sierras de Demanda, Urbión, Cebollera y

Cameros". Destaca el predominio del espacio forestal con bosques de hayas, robles, quejigos, encinas, rebollos y pinares de pino silvestre, propios de los pisos supramediterráneo y oromediterráneo del sector central del Sistema Ibérico, así como las únicas representaciones del piso crioromediterráneo en La Rioja. Entre la fauna asociada a ecosistemas acuáticos se distingue el desmán de los pirineos (*Galemys pyrenaicus*), la nutria (*Lutra lutra*) y el visón europeo (*Mustela lutreola*).

3. DESCRIPCIÓN DE LOS TRABAJOS REALIZADOS

Para acometer la caracterización del embalse se ha ubicado una estación en las inmediaciones de la presa (E1) y otra en el tributario principal (T1), río Najerilla, en las proximidades de la localidad de Villavelayo (ver Figura 2). Una descripción detallada de los trabajos realizados en el marco del Estudio se presenta en el apartado 4.1. de la MEMORIA DEL ESTUDIO.

En total se han realizado 4 campañas de muestreo en el embalse, distribuidas a lo largo de los años 2004 y 2005. En el **cuadro III** se presentan las fechas de los muestreos y si en esa fecha hay estratificación térmica en el embalse.

Cuadro III: Campañas y fechas de muestreo

1808/2004	Estratificación
05/11/2004	Mezcla
31/03/2005	Mezcla
07/07/2005	Estratificación
	05/11/2004 31/03/2005

4. DIAGNÓSTICO DE LA SITUACIÓN ACTUAL

4.1. Características físico-químicas de las aguas

Los resultados físico-químicos de cada una de las campañas de muestreo se presentan en el **Anexo I**. Del comportamiento observado se desprenden las siguientes apreciaciones:

- La temperatura del agua es moderada-baja, presentando una media anual en torno a los 9,5 °C. Oscila entre los 3,8 °C -mínimo- y los 21,28 °C, -máximo registrado en el estío-. En el periodo estival la termoclina se sitúa entre los 9 y 10 m de profundidad.
- El pH del agua es ligeramente alcalino, con un valor medio anual de 8,08 ud. El máximo epilimnético estival es de 9,35 ud y el mínimo, registrado en las capas más profundas, de 7,23 ud.
- La transparencia del agua es moderada, con un registro medio anual en la lectura de disco de Secchi de 3,8 m, lo que supone una profundidad de la capa fótica en torno a 6 metros. El mínimo (2,75 m) se registra en agosto de 2004, mientras que el máximo (5,95 m) se registra en julio de 2005.
- Las condiciones de oxigenación de la columna de agua son buenas, alcanzando durante el periodo de estudio una concentración media de 7,24 mg/l O₂. El mínimo, 1,34 mg/l O₂ se registra en la campaña de noviembre de 2004 y en el último metro de profundidad. El máximo (9,94 mg/l O₂) se da en verano de 2004, a 10 metros de profundidad, donde se localiza la termoclina. En ninguna de las cuatro campañas realizadas se han detectado condiciones anóxicas (<1 mg/l O₂).
- La conductividad de las aguas es moderada, situándose la media anual en 196
 μS/cm. Los resultados obtenidos se encuentran dentro de los valores históricos de
 este ámbito.

Perfil de pH

Perfil de temperatura

Oxígeno disuelto (mg/l)

jul-04

- mar-05

Cota (msnm) 830 825 Cota (msnm) Unidades de pH Temperatura (°C) Perfil de oxígeno disuelto Perfil de conductividad Cota (msnm) Cota (msnm)

nov-04 jul-05 Conductividad (µS/cm)

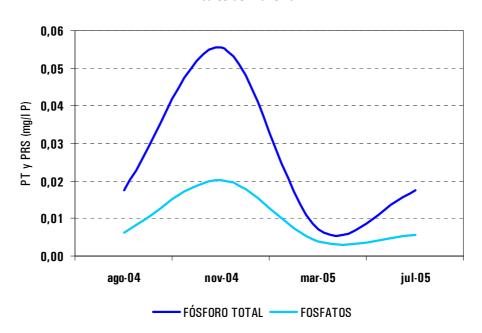
Figura 3: Perfiles físico-químicos del embalse

4.2. Hidroquímica del embalse

De los resultados analíticos obtenidos a lo largo del periodo 2004-2005, y que se presentan en el **Anexo II**, se desprenden las siguientes conclusiones:

 Las concentraciones de nutrientes son moderadas y se encuentran dentro de los rangos conocidos para el embalse.

La concentración media de fósforo total para el periodo estudiado, y toda la columna de agua, adquiere un valor de 0,024 mg/l P. El máximo se da en invierno - 0,055 mg/l P-, mientras que el mínimo -0,007 mg/l P- se obtiene en primavera. Las concentraciones registradas en el tributario pueden considerarse moderadas, presentándose el máximo -0,052 mg/l P- en agosto de 2004.


La concentración de Nitrógeno Inorgánico Total (NIT) es moderadamente baja, 0,24 mg/l N de media anual. Las concentraciones obtenidas en 2005 han sido ligeramente superiores a las de 2004, dándose el máximo en primavera, donde la concentración media para la columna de agua se sitúa en 0,31 mg/l N. Entre las formas inorgánicas la dominante es la de nitratos (NO₃/NIT = 92%), siendo la proporción de amonio moderada (NH₄/NIT = 7%) y la de nitritos muy pequeña (NO₂/NIT = 1%).

- El contenido de materia orgánica obtenido, tanto en el embalse como en el tributario, es bajo y no presenta variaciones interanuales destacables. Los valores medios obtenidos en el embalse han sido de 1,8 y 9,0 mg O₂/I, para la DBO₅ y DQO, respectivamente.
- Las aguas embalsadas son moderadamente mineralizadas y la concentración de calcio (23,8 mg Ca/l) se sitúa en el rango habitual en el embalse.

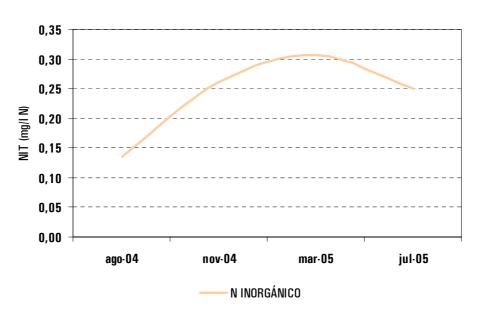


Figura 4: Evolución temporal de la concentración de nutrientes

Valores medios de Fósforo Total y Fósforo Reactivo Soluble Embalse de Mansilla

Valores medios de Nitrógeno Inorgánico Total Embalse de Mansilla

4.3. Productores primarios y concentración de pigmentos fotosintetizadores

Los resultados de los análisis cuantitativos de fitoplancton se presentan en el **Anexo III**. De los resultados obtenidos se desprenden las siguientes apreciaciones.

De la totalidad de 4 análisis realizados se han identificado un total de 54 especies, distribuidas entre los siguientes grupos taxonómicos:

- 18 diatomeas
- 1 cianobacterias
- 20 clorofíceas
- 5 criptofíceas
- 2 crisofíceas
- 4 dinofíceas
- 2 euglenofíceas
- 2 zigofíceas

El gráfico siguiente recoge los cambios estacionales -climatológicos- de las comunidades fitoplanctónicas del embalse a lo largo del año hidrológico estudiado -2004-2005-. Las 7 especies que aparecen en el gráfico son consideradas las más representativas de este sistema léntico, atendiendo a la densidad algal -cel/ml- que presenten en una determinada estación climatológica.

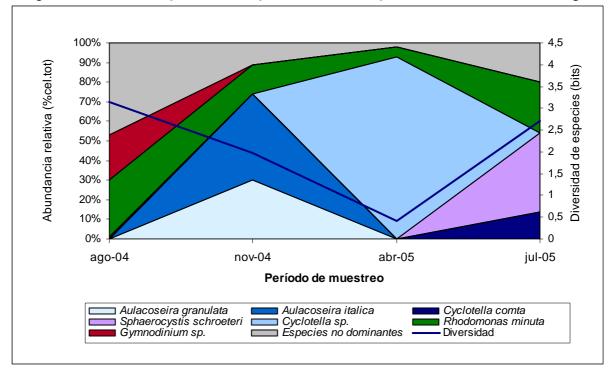


Figura 5: Evolución temporal de las especies dominantes y diversidad de la comunidad algal

La composición y estructura poblacional han mantenido las siguientes pautas temporales:

En el estío de 2004 la comunidad algal presenta valores de densidad reducidos -555 cel/ml-. La distribución de abundancias está equilibrada entre 4 grupos –diatomeas, clorofíceas, criptofíceas y dinofíceas-. Las dos especies que caracterizan la comunidad algal representando la mitad de la población son la criptofícea *Rhodomonas minuta* y la dinofícea *Gymnodinium sp*. El valor de diversidad de Shannon-Weaber es el máximo registrado durante el periodo de estudio -3,14 bits-.

En el periodo invernal la densidad fitoplanctónica crece y se establece en valores moderados -1.515 cel/ml-. Las diatomeas céntricas incrementan su abundancia y dominan la comunidad algal favorecidas por las condiciones de menor temperatura e intensidad lumínica. Las dos especies de diatomeas más abundantes son *Aulacoseira italica* y *Aulacoseira granulata*.

Durante la época primaveral la comunidad algal continúa creciendo hasta alcanzar la máxima densidad celular -6.263 cel/ml-. La especie responsable del aumento de la

densidad fitoplanctónica es la diatomea *Cyclotella sp.*, ya que representa el 93% de la comunidad, de forma que las demás especies identificadas son muy poco abundantes. Todo ello determina el mínimo valor del índice de diversidad de Shannon-Weaber calculado -0,42 bits-.

En el periodo estival de 2005 la densidad algal de la comunidad sufre un fuerte descenso y se contabiliza el valor más bajo del periodo -293 cel/ml-. El grupo algal que ha sufrido una mayor reducción son las diatomeas y pasan a caracterizar la comunidad las clorofíceas a través de *Sphaerocystis schroeteri* y las criptofíceas a través de *Rhodomonas minuta*.

La evolución temporal de la densidad algal, segregada por clases taxonómicas y la biomasa expresada en concentración de clorofila *a*, se representa en el siguiente gráfico:

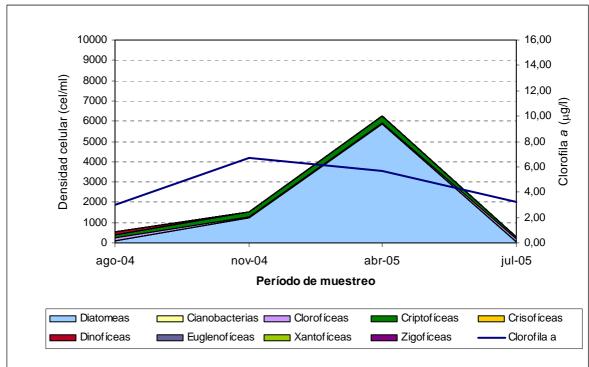
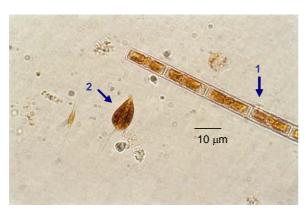


Figura 6: Evolución temporal por clases taxonómicas


La evolución de clorofila *a* y densidad algal tienen una buena correspondencia excepto en primavera, donde la densidad se hace máxima -6.263 cel/ml-, pero se registra una pequeña reducción en la clorofila *a*. Esta situación podría explicarse a través del reducido

tamaño de la especie dominante, ya que la diatomea *Cyclotella sp.* tiene un diámetro medio de 5 µm, y por lo tanto no contribuye a medir altas concentraciones clorofila *a.*

4.3.1. Cualidad bioindicadora

La sucesión de la comunidad algal en el embalse de Mansilla se caracteriza por el

1. Aulacoseira italica; 2. Criptomonas marssonii

predominio durante el primer periodo estival de la criptofícea *Rhodomonas minuta* y la dinofícea *Gymnodinium sp.*, especies más propias del final del verano en un medio mesotrófico. El crecimiento de diatomeas céntricas en invierno y su mayor proliferación en primavera confirma el grado mesotrófico indicado durante el primer periodo estival. El segundo verano se

caracteriza por la proliferación de la clorofícea *Sphaerocystis schroeteri*, especie común de medios mesotróficos y bien iluminados. Por tanto, la sucesión algal indica que el embalse de Mansilla es un medio mesotrófico, clasificación que queda confirmada con los valores medios de densidad algal -2.156 cel/ml - y de biomasa -4,65 μ g/l -.

5. DIAGNÓSTICO DEL GRADO TRÓFICO

En función de la variedad de índices que se plasma en el cuadro IV, se puede catalogar al embalse de Mansilla, como mesotrófico.

Prácticamente la totalidad de índices contrastados sitúan al embalse en rangos de mesotrofia. Tan sólo, atendiendo a criterios de la OCDE, la clorofila a, considerando su valor máximo anual, cataloga al embalse como oligotrófico.

Cuadro IV Catalogación del grado trófico del embalse según los diferentes índices

Indice	Definición criterio	Rango	2	2.004-2.005
			Valor	Grado Trófico
EPA (1976)	PT (ug/l); media anual	<10-MESO-20>	24	<i>EUTRÓFICO</i>
EPA (Weber, 1976)	N° células algales/ml	<2000-MESO-15000>	2.157	MESOTRÓFICO
EPA (Weber, 1976)	Clorofila (ug/l); máx. fót.	< 3-MESO-20 >	6,7	MESOTRÓFICO
Lee, Jones & Rast (1978)	Clorofila (ug/l);media anual	<2,1-3-6,7-10>	4,6	<i>MESOTRÓFICO</i>
Lee, Jones & Rast (1978)	PT (ug/l); media anual	< 8- 12 - 28 -40 >	24	MESOTRÓFICO
Lee, Jones & Rast (1978)	SDT (m); media anual	<1,8-2,4-3,8-4,6>	3,3	MESOTRÓFICO
Margalef (1983)	N° células algales/ml	5000 (lím. eut.avanmod.)	2.157	E. MODERADA
Margalef (1983)	Clorofila (ug/l); anual fót.	5 (lím. eut.avanmod.)	4,6	E. MODERADA
Margalef (1983)	PT (ug/l); media anual	15 (lím. eut.avanmod.)	24	E. AVANZADA
Margalef (1983)	NO3-N (ug/l); media anual	140 (lím. eut.avanmod.)	221	E. AVANZADA
Margalef (1983)	SDT (m); media anual	3 (lím. eut.avanmod.)	3,3	E. MODERADA
OCDE (1980)	Clorofila (ug/l); anual fót.	<1; < 2.5; 2.5-8; 8-25; > 25	4,6	<i>MESOTRÓFICO</i>
OCDE (1980)	Clorofila (ug/l); máx. anual	<2.5; <8;8-25;25-75; >75	6,7	<i>OLIGOTRÓFICO</i>
OCDE (1980)	PT (ug/l); media anual	Uol. < 4-10-35-100 > Heu.	24	<i>MESOTRÓFICO</i>
OCDE (1980)	SDT (m); media anual	>12; > 6;;6-3;3-1.5; < 1.5	3,3	<i>MESOTRÓFICO</i>
OCDE (1980)	SDT (m); mínimo anual	>6; >3;3-1.5;1.5-0.7; < 0.7	1,6	MESOTRÓFICO
TSI (Carlson, 1974): DST	TSI= 10(6-log2(DST))	Uol. < 20-40-60-80 > Heu.	43	<i>MESOTRÓFICO</i>
TSI (Carlson, 1974): CLA	10(6-log2 7,7(1/Cla^0,68))	Uol. < 20-40-60-80 > Heu.	46	MESOTRÓFICO
TSI (Carlson, 1974): PT	TSI = 10(6-log2(54,9/PT))	Uol. < 20-40-60-80 > Heu.	48	<i>MESOTRÓFICO</i>

6. DEFINICIÓN DEL POTENCIAL ECOLÓGICO

En el apartado 6.1. de la MEMORIA DEL ESTUDIO -ESTABLECIMIENTO DEL POTENCIAL ECOLÓGICO- se describe la metodología empleada para clasificar el potencial ecológico.

Tal y como se refleja en el cuadro siguiente, el potencial ecológico del embalse de Mansilla es **BUENO**.

EMBALSE DE MA	MBALSE DE MANSILLA			CLASES DE	L POTENCIAI	L ECOLÓGICO						
Indicadores	Elementos	Parámetros	Óptimo	Bueno	Moderado	Deficiente	Malo	Valor obs.	Valoración del parámetro	Valoración del indicador	IPE	EQR
Biológicos	Composición, abundancia y	Densidad algal, media anual (cel/ml)	< 5000	5000-15000	15000-25000	25000-50000	>50000	2.156	5			
_	biomasa de fitoplancton	Biomasa algal, Cla a (µg/l); anual capa fótica	0-1	1-2,5	2,5-8	8,0-25	> 25	4,6	3	3,0		
		Cianofíceas tóxicas; máx anual (cel/ml)	0-500	500-2000	2000-20000	20000-100000	> 10 ⁵	8	5	5		
Físico-Químicos	Transparencia	Disco de Secchi; media anual (m)	>12	12-6	6-3	3-1,5	<1,5	3,3	3		3,0	0,82
	Condiciones de oxigenación	Concentración hipolimnética media anual (mg/l O ₂)	>8	8-6	6-4	4-2	<2	6,9	4	3,3		
	Concentración de nutrientes	Concentración de PT: media anual (µg/l P)	0-4	4-10	10-35	35-100	>100	24,5	3			
			VALOR	ACIÓN DE CA	DA CLASE							
			5	4	3	2	1	1				

	C	CLASES DEL POTENCIAL ECOLÓGICO									
	Óptimo Bueno <u>Moderado Deficiente Malo</u>										
EQR	1-0,95	1-0,95 0,95-0,80 0,80-0,60 0,60-0,40 0,40-0									

ANEXO I. RESULTADOS FÍSICO QUÍMICOS

EMBALSE:		MANSILI	A (ML)		CAMPAÑA:		1	
COT. MAX:		930			NIVEL:		920	
Estación:			E1		Profundidad	l:	56	
Fecha:			10/08/2004		Hora:		8:30	
Disco Secchi	(m):		3,35	(Capa fótica	(m):	6	
Prof.	Cota	Temp	pН	OD	OD	Cond.	Redox	T.D.S.
m.	msnm	°C	unid	mg/l	% sat.	μ S/cm	mV	mg/l
0	920	20,94	9,33	8,69	97,4	160	360	104
1	919	21,28	9,33	8,73	98,5	160	362	104
2	918	21,27	9,33	8,72	98,4	160	365	104
3	917	21,28	9,34	8,73	98,4	160	366	104
4	916	21,28	9,35	8,69	98,1	160	369	104
5	915	21,28	9,35	8,76	98,9	160	368	104
6	914	21,27	9,34	8,73	98,5	160	369	104
7	913	21,28	9,34	8,68	97,9	160	369	104
8	912	21,28	9,34	8,68	97,9	160	371	104
9	911	20,98	9,28	9,23	103,3	161	372	105
10	910	19,36	9,21	9,94	107,9	164	371	107
11	909	18,87	9,10	9,71	104,4	165	370	107
12	908	18,22	8,93	9,21	97,8	166	367	108
13	907	17,33	8,51	8,09	84,6	169	357	110
14	906	16,63	8,22	7,40	76,0	169	350	110
15	905	15,96	8,02	6,89	69,7	169	343	110
16	904	15,00	7,88	6,53	64,8	168	342	109
17	903	13,80	7,78	6,14	59,5	165	342	107
18	902	12,89	7,76	6,68	63,3	160	343	104
19	901	12,20	7,75	6,89	64,2	156	345	101
20	900	11,54	7,76	7,27	66,7	153	345	99
21	899	11,54	7,75	7,30	66,5	152	345	99
22	898	10,79	7,76	7,41	66,9	152	346	99
23	897	10,63	7,77	7,63	68,6	152	347	99
24	896	10,35	7,78	7,69	68,7	151	347	98
25	895	10,14	7,77	7,60	67,7	151	348	98
26	894	9,99	7,78	7,65	67,8	151	348	98
27	893	9,80	7,80	7,79	68,7	151	349	98
28	892	9,65	7,80	8,03	70,6	151	349	98
29	891	9,52	7,82	8,19	71,8	152	350	99
30	890	9,43	7,84	8,08	70,7	154	353	100
31	889	9,35	7,82	7,95	69,4	159	352	103
32	888	9,30	7,79	7,78	67,7	163	352	106
33	887	9,26	7,77	7,40	64,4	166	351	108
34	886	9,20	7,75	7,18	63,4	168	349	109
35	885	9,05	7,74	7,12	61,9	170	349	111
36	884	8,76	7,7 4 7,74	7,12	61,3	169	349	110
37	883	8,28	7,74	7,12	61,4	166	349	108
38	882	8,02	7,72	7,22	61,5	166	350	108
39	881	7,76	7,72 7,73	7,28 7,38	62,0	166	350	108
40	880	7,76	7,73 7,70	7,38 7,27	60,8	166	349	108
40	879	7,55 7,41	7,70 7,69	7,27 7,17	59,7	166	349	108
41	878	7,41	7,69 7,68	7,17 7,15	59,7 59,4	166	349	108
42	877	7,30 7,21	7,68 7,69	7,15 7,18	59,4 59,5	166	349 349	108
43	0//	1,41	7,09	7,10	59,5	100	348	100

EMBALSE:		MANSILL	A (ML)	(CAMPAÑA:		1	
COT. MAX:		930		NIVEL:			920	
Estación:			E1	1	Profundidad	:	56	
Fecha:			10/08/2004	I	Hora:		8:30	
Disco Secchi	(m):		3,35	Capa fótica (m):		6		
Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S.
m.	msnm	°C	unid	mg/l	% sat.	μS/cm	mV	mg/l
44	876	7,15	7,70	7,18	59,5	166	349	108
45	875	7,12	7,70	7,29	60,3	166	349	108
46	874	7,08	7,69	7,22	59,7	166	349	108
47	873	7,04	7,66	6,92	57,1	166	348	108
48	872	7,01	7,65	6,79	56,0	166	348	108
49	871	6,98	7,63	6,72	55,4	166	347	108
50	870	6,96	7,61	6,46	53,2	166	347	108
51	869	6,95	7,60	6,24	51,4	167	346	109
52	868	6,93	7,55	5,76	47,4	167	342	109
53	867	6,93	7,53	5,45	44,9	167	342	109
54	866	6,92	7,51	5,18	42,8	167	341	109
55	865	6,92	7,49	4,99	41,2	167	340	109
55,5	864	6,92	7,49	4,85	39,9	167	332	109

TRIBUTARIO:	Najerilla	CAMPAÑA:	1_
Estación:	MLT1	Cod. Est.: ML1T1	

Fecha: 09/08/2004 Hora: 21:15

Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S.
m.	msnm	°C	unid	mg/l	% sat.	μ S/cm	mV	mg/l
1	-	16,24	8,69	8,49	86,6	279	292	181

EMBALSE: COT. MAX:		MANSILI 930	_A (ML)		CAMPAÑA: NIVEL:		2 909	
Estación:		300	E1		Profundidad		42	
Fecha:			05/11/2004		Hora:		9:35	
Disco Secchi	(m):		3		Capa fótica	(m):	5.55	
Prof.	Cota	Temp	pH ··	OD	OD	Cond.	Redox	T.D.S.
<u>m.</u>	msnm	°C	unid	mg/l	% sat.	μS/cm	mV	mg/l
0	909	12,62	8,43	7,97	75,2	270	291	176
1	908	12,62	8,42	7,55	71,1	270	290	176
2	907	12,63	8,43	7,80	73,3	270	291	176
3	906	12,63	8,43	8,01	75,3	270	291	176
4	905	12,64	8,42	8,09	76,3	270	291	176
5	904	12,64	8,42	7,87	73,8	270	291	176
6	903	12,64	8,42	7,60	71,6	270	291	176
7	902	12,64	8,42	7,39	69,8	270	291	176
8	901	12,64	8,42	7,26	68,4	270	291	176
9	900	12,64	8,42	7,27	68,4	270	292	176
10	899	12,63	8,42	7,23	67,8	270	292	176
11	898	12,63	8,42	7,17	67,2	270	292	176
12	897	12,62	8,41	7,14	67,1	270	292	176
13	896	12,38	8,38	6,98	65,5	262	291	170
14	895	12,31	8,31	6,97	65,1	262	286	170
15	894	12,26	8,28	6,88	64,3	261	285	170
16	893	12,24	8,22	6,80	63,4	261	283	170
17	892	12,18	8,16	6,64	61,9	261	281	170
18	891	12,10	8,10	6,49	60,3	261	278	170
19 20	890 889	11,99 11,87	8,12	6,57 6,34	60,8 58,7	263 263	279 277	171 171
20	888	11,67	8,05 8,04	6,33	58,7 58,2	263 267	277	171
22	887	11,73	8,04 8,07	6,42	50,2 59,0	265	277	174
23	886	11,54		5,42 5,80		203 270	279 274	172
			7,88		54,3			
24 25	885	11,22	7,68	4,54	42,7	270	266	176
25 26	884 883	10,99 10,24	7,55 7,48	3,18	29,2	273	261 257	177 174
				2,71	24,3	267		
27 28	882 881	9,29 8,93	7,45 7,40	2,45 2,41	21,4 20,9	259 255	257 255	168 166
29	880	8,47	7,40 7,40	2,41	20,9	255 252	255 255	164
30	879	8,47 8,27	7,40 7,34	2,31	20,3	252 250	253 253	163
31	878	8,14	7,34 7,33	2,39	20,3 19,8	250 248	253 252	161
32	877	8,07	7,33 7,32	2,33	19,8	248 247	252	161
33	876	7,96	7,32 7,32		20,0	247 246	252 252	160
34	875	7,90 7,91	7,32 7,31	2,37 2,37	20,0	246 246	252	160
35	874	7,91	7,31 7,31	2,37 2,35	19,8	246 246	252 252	160
36	873	7,85		2,38	19,8	246 246	252 251	160
37			7,30					
38	872 871	7,82 7,76	7,29 7,29	2,43 2,33	20,5 19,6	245 245	251 251	159 159
39	870	7,76 7,73	7,29 7,28	2,33 2,09	19,6	245 246	251 251	
40	869	7,73 7,69	7,28 7,27	2,09 1,90	16,1		251 250	160 160
40	868	7,69 7,68	7,27 7,25	1,90	14,3	246 246	250 248	160
42	867	7,68	7,23	1,34	11,2	247	242	161

3

925

EMBALSE:

COT. MAX:

31

32

33

894

893

892

4,06

3,93

3,83

TRIBUTARIO: Najerilla CAMPAÑA: 2

Estación: MLT1 Cod. Est.: ML2T1 Fecha: 05/11/2004 Hora: 8:51

MANSILLA (ML)

930

Prof. Cota Temp рΗ OD OD Cond. Redox T.D.S. ٥С m. msnm unid mg/l % sat. μS/cm mV mg/l 1 8,95 8,21 8,88 77,0 334 285 217

CAMPAÑA:

NIVEL:

E1 Profundidad: 55 Estación: Fecha: 31/03/2005 Hora: 17:10 Disco Secchi (m): 2,75 Capa fótica (m): 5 OD OD T.D.S. Prof. Cota рН Redox Temp Cond. ٥C m. msnm unid mg/l % sat. μS/cm mV mg/l 0 925 8,50 8,24 7,52 64,4 178 118 116 1 924 8,40 8,25 7,60 64,8 182 122 118 2 923 8,12 8,29 8,13 70,3 182 130 118 3 922 7,85 8,33 8,00 68,1 180 134 117 4 921 7,66 8,33 8,66 73,2 178 136 116 5 920 7,60 8,28 8,23 69,2 178 136 116 6 919 7,55 8,21 7,67 65,9 177 135 115 7 918 7,51 8,19 7,97 67,4 177 135 115 8 917 7.42 8,16 8.05 66,1 176 135 114 9 916 7,26 8,13 8,03 65,7 174 135 113 7,18 10 915 8,11 8,03 64,1 174 135 113 11 914 6,96 8,09 7,87 64,7 175 136 114 913 6,85 8,07 7,62 62,7 178 136 115 12 6,78 8,05 7,77 63,7 178 13 912 136 116 14 911 6,65 8,04 7,82 63,8 182 136 118 6,04 8,04 64,2 125 15 910 7.62 193 139 16 909 5,77 8,01 7,60 60,7 194 138 126 17 908 5,37 8,01 7,56 58,2 200 139 130 907 7,99 203 132 18 5,15 7,09 55,7 140 19 906 4,88 7,99 6,80 53,0 206 141 134 20 905 4,71 7,99 7,06 54,9 209 142 136 21 904 4,63 7,99 7,03 55,1 210 143 136 22 903 4,62 7,99 7,06 54,8 210 143 136 23 902 4,59 7,99 6,52 52,8 210 144 136 24 901 4,51 7,99 6,67 51,6 210 144 137 25 900 7,99 49,7 144 4,43 6,23 211 137 26 899 4,43 7,99 47,9 145 137 6,23 211 898 27 4,33 8,00 6,58 50,6 211 146 137 28 897 4,29 8,00 6,32 48,6 212 146 138 29 896 4,25 6,09 46,8 212 138 8,00 147 30 895 4,18 8,00 5,81 44,6 213 147 138

6,44

6,26

6,39

49,9

47,7

49,2

213

214

215

147

148

148

139

139

140

8,00

8,00

8,00

EMBALSE:		MANSIL	LA (ML)		CAMPAÑA:	3		
COT. MAX:		930			NIVEL:		925	
Estación:			E1	Profundidad:			55	
Fecha:			31/03/2005		Hora:		17:10	
Disco Secchi	(m):		2,75		Capa fótica	(m):	5	
Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S.
m.	msnm	°C	unid	mg/l	% sat.	μ S/cm	mV	mg/l
34	891	3,84	8,00	6,48	47,0	215	149	140
35	890	3,82	7,99	6,17	46,7	217	149	141
36	889	3,81	7,99	6,32	48,0	217	149	141
37	888	3,83	7,99	6,47	49,2	217	149	141
38	887	3,83	7,99	6,21	47,2	217	150	141
39	886	3,91	7,98	6,34	48,2	221	149	144
40	885	3,90	7,98	6,48	47,0	221	149	144
41	884	3,92	7,98	6,42	48,9	223	150	145
42	883	3,92	7,98	6,45	49,0	224	150	146
43	882	3,93	7,97	6,40	48,8	224	149	146
44	881	3,93	7,98	6,43	49,0	226	151	147
45	880	4,01	7,97	6,22	47,5	227	151	148
46	879	4,03	7,96	6,47	47,1	229	150	149
47	878	4,05	7,96	6,00	46,1	228	150	148
48	877	4,06	7,95	5,96	45,5	230	150	149
49	876	4,06	7,94	5,85	44,7	230	150	149
50	875	4,08	7,93	5,78	44,2	232	150	150
51	874	4,09	7,93	5,74	43,8	230	150	149
52	873	4,09	7,92	6,07	46,5	231	150	150
53	872	4,10	7,92	5,98	45,0	231	150	150
54	871	4,11	7,91	5,99	45,9	233	150	151
55	870	4,13	7,87	5,70	42,8	233	57	151

TRIBUTARIO:	Najerilla	CAMPAÑA:	3_
Estación:	MLT1	Cod. Est.: ML3T1	
Fecha:	31/03/2005	Hora: 15:42	
•	•		•

Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S.
m.	msnm	°C	unid	mg/l	% sat.	μ S/cm	mV	mg/l
1	-	9,83	8,43	7,65	67,4	145	113	94

0 1 2 3 4 5 6 7 8	m): Cota msnm 924 923 922 921 920 919 918 917 916	Temp °C 20,35 20,37 20,36 20,35 20,33 20,24 20,21 20,11	E1 07/07/2005 5,95 pH unid 8,94 8,89 8,89 8,89 8,89 8,92 9,13	F	Profundidad Hora: Capa fótica OD % sat. 101,0 100,4 98,2 98,1		923,7 51 17:55 10 Redox mV	T.D.S. mg/l 103 103 103
Fecha: <u>Disco Secchi (ale Prof.</u> m. 0 1 2 3 4 5 6 7 8	Cota msnm 924 923 922 921 920 919 918 917	°C 20,35 20,37 20,36 20,35 20,33 20,24 20,21	07/07/2005 5,95 pH unid 8,94 8,89 8,89 8,89 8,92 9,13	OD mg/l 9,11 9,05 8,86 8,85	Hora: Capa fótica OD % sat. 101,0 100,4 98,2	(m): Cond. <u>\psi/cm</u> 158 158	17:55 10 Redox	mg/l 103 103
Disco Secchi (no prof. m. 0 1 2 3 4 5 6 7 8	Cota msnm 924 923 922 921 920 919 918 917	°C 20,35 20,37 20,36 20,35 20,33 20,24 20,21	5,95 pH unid 8,94 8,89 8,89 8,89 8,92 9,13	OD mg/l 9,11 9,05 8,86 8,85	OD % sat. 101,0 100,4 98,2	Cond. µS/cm 158 158	10 Redox	mg/l 103 103
Prof. m. 0 1 2 3 4 5 6 7 8	Cota msnm 924 923 922 921 920 919 918 917	°C 20,35 20,37 20,36 20,35 20,33 20,24 20,21	pH unid 8,94 8,89 8,89 8,89 8,92 9,13	OD mg/l 9,11 9,05 8,86 8,85	OD % sat. 101,0 100,4 98,2	Cond. µS/cm 158 158	Redox	mg/l 103 103
m. 0 1 2 3 4 5 6 7 8	924 923 922 921 920 919 918 917	°C 20,35 20,37 20,36 20,35 20,33 20,24 20,21	unid 8,94 8,89 8,89 8,89 8,92 9,13	mg/l 9,11 9,05 8,86 8,85	% sat. 101,0 100,4 98,2	μS/cm 158 158		mg/l 103 103
0 1 2 3 4 5 6 7 8	924 923 922 921 920 919 918 917	20,35 20,37 20,36 20,35 20,33 20,24 20,21	8,94 8,89 8,89 8,89 8,92 9,13	9,11 9,05 8,86 8,85	101,0 100,4 98,2	158 158	- - -	103 103
1 2 3 4 5 6 7 8	923 922 921 920 919 918 917	20,37 20,36 20,35 20,33 20,24 20,21	8,89 8,89 8,89 8,92 9,13	9,05 8,86 8,85	100,4 98,2	158	-	103
2 3 4 5 6 7 8	922 921 920 919 918 917	20,36 20,35 20,33 20,24 20,21	8,89 8,89 8,92 9,13	8,86 8,85	98,2		-	
3 4 5 6 7 8	921 920 919 918 917	20,35 20,33 20,24 20,21	8,89 8,92 9,13	8,85				
4 5 6 7 8	920 919 918 917	20,33 20,24 20,21	8,92 9,13			158	_	103
5 6 7 8	919 918 917	20,24 20,21	9,13	0,00	99,7	158	_	103
6 7 8	918 917	20,21		9,00	99,7	158	_	103
7 8	917		9,22	8,95	99,0	158	_	103
8			9,26	8,90	98,2	159	_	103
	310	19,53	9,18	8,93	97,2	161		105
9	915	16,46	9,01	9,35	96,1	167		109
10	914	15,08	8,81	9,33	91,6	165		103
11	913	14,74	8,74	9,11	90,2	166		107
12	912	14,74	8,67				-	108
				8,87	87,0	166	-	
13	911	13,03	8,60	8,87	84,3	165	-	107
14	910	12,92	8,53	8,75	83,2	165	-	107
15	909	12,54	8,49	8,82	81,4	163	-	106
16	908	12,60	8,37	9,05	83,5	163	-	106
17	907	11,43	8,35	9,05	82,8	161	-	105
18	906	10,63	8,03	9,23	83,2	161	-	105
19	905	9,82	7,91	9,65	85,3	151	-	98
20	904	9,51	7,87	9,74	85,3	151	-	98
21	903	8,86	7,81	9,83	85,0	151	-	98
22	902	8,76	7,98	9,81	84,4	151	-	98
23	901	8,42	8,06	9,84	84,0	156	-	101
24	900	8,29	8,08	9,60	79,5	157	-	102
25	899	8,21	8,09	9,63	82,0	158	-	103
26	898	8,05	8,06	9,49	80,3	160	-	104
27	897	7,94	8,07	9,43	79,6	163	-	106
28	896	7,73	8,06	9,48	79,6	165	-	107
29	895	7,58	8,05	9,46	79,0	169	-	110
30	894	7,41	8,03	9,37	78,3	172	-	112
31	893	7,31	8,01	9,19	76,8	174	-	113
32	892	7,19	8,01	9,14	75,7	174	-	113
33	891	7,11	8,02	9,09	75,1	175	-	114
34	890	6,98	8,00	9,20	75,8	176	-	114
35	889	6,82	7,98	9,22	75,8	177	-	115
36	888	6,65	7,97	9,16	75,0	177	-	115
37	887	6,36	7,94	9,30	75,2	178	-	116
38	886	6,11	7,98	9,47	76,3	179	_	116
39	885	5,79	8,05	9,64	77,1	180	_	117
40	884	5,47	8,04	9,58	76,0	182	_	118
41	883	5,33	8,04	9,61	75,9	183	_	119
42	882	5,24	8,02	9,68	76,3	183	_	119
43	881	5,07	8,00	9,68	76,3 76,2	185	_	120
70	551	3,07	5,00	3,00	, 0,2	100		120

EMBALSE:		MANSILI	LA (ML)		CAMPAÑA:			
COT. MAX:		930			NIVEL:			
Estación:			E1		Profundidad:		51	
Fecha:			07/07/2005		Hora:		17:55	
Disco Secchi	(m):		5,95		Capa fótica	(m):	10	
Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S.
m.	msnm	°C	unid	mg/l	% sat.	μS/cm	mV	mg/l
44	880	4,86	7,93	9,37	73,6	187	-	122
45	879	4,86	7,94	9,19	71,4	187	-	122
46	878	4,84	7,92	9,10	71,0	187	-	122
47	877	4,81	8,01	9,05	70,6	187	-	122
48	876	4,78	8,10	9,01	70,2	188	-	122
49	875	4,76	7,96	8,99	70,0	188	-	122
50	874	4,76	7,91	8,96	69,8	188	-	122
51	873	4,76	7,86	8,87	69,1	188	-	122

TRIBUTA	RIO:	Najerilla		CAMPAÑA:		4		
Estación: Fecha:		MLT1 07/07/2005		Cod. Est.: Hora:	ML4T1 19:45			
Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S.
m.	msnm	°C	unid	mg/l	% sat.	μ S/cm	mV	mg/l
1	-	19,12	9,25	8,06	87,1	401	-	261

ANEXO II. RESULTADOS QUÍMICOS

EMBALSE:	MANSILLA			CÓDIGO:	ML1
CAMPAÑA:	1			FECHA:	07/08/2004
COTA MÁXIMA:	930			NIVEL:	920
		CÓDI	GO DEL P	UNTO DE MU	<i>IESTREO</i>
PARÁMETRO	UNIDAD	E1S	E1T	E1F	T1
PROFUNDIDAD	m	1	17	55	
COTA	msnm	919	903	865	
SÓLIDOS EN SUSPENSIÓN	mg/l	1,2	1,5	1,0	3,1
ALCALINIDAD TOTAL	mg CO₃Ca/I	64,3	68,2	69,6	102,7
DBO₅	mg O ₂ /I	0,5	1,0	1,2	1,5
DQO	mg O ₂ /I	3,9	3,9	3,9	3,9
FÓSFORO TOTAL	mg P/I	0,020	0,025	0,008	0,052
FOSFATOS	mg PO ₄ 3/I	0,012	0,036	0,009	0,160
FOSFATOS	mg P/I	0,004	0,012	0,003	0,052
NITRÓGENO KJELDAHL	mg N/I	0,29	0,34	0,36	0,52
AMONIO TOTAL	mg NH ₄ /I	0,00	0,00	0,00	0,03
AMONIO TOTAL	mg N/I	0,00	0,00	0,00	0,02
NITRÓGENO ORGÁNICO	mg N/I	0,29	0,34	0,36	0,50
NITRATOS	mg NO₃/I	0,00	1,43	0,33	2,02
NITRATOS	mg N/I	0,00	0,32	0,08	0,46
NITRITOS	mg NO ₂ /I	0,012	0,008	0,012	0,064
NITRITOS	mg N/I	0,004	0,002	0,004	0,019
N INORGÁNICO	mg N/I	0,00	0,33	0,08	0,50
CALCIO	mg Ca/l	23,3	23,4	24,9	
MAGNESIO DISUELTO	mg Mg/l	4,7	4,6	4,5	
SODIO	mg Na/I	1,8	1,7	1,6	
POTASIO	mg K/I	0,5	0,5	0,5	
CLORUROS	mg Cl ⁻ /l	1,0	1,0	0,5	
SULFATOS	mg SO ₄ -2/l	10,5	11,6	10,4	
SULFUROS	mg S ⁻² /I			0,001	
SÍLICE	mg SiO ₂ /I	6,74	5,89	5,59	
CLOROFILA a	μ g/l	3,0			

EMBALSE:	MANSILLA			CÓDIGO:	ML2
CAMPAÑA:	2			FECHA:	05/11/2004
COTA MÁXIMA:	930			NIVEL:	909
		CÓD	IGO DEL	PUNTO DE M	UESTREO
PARÁMETRO	UNIDAD	E1S	E1M	E1F	T1
PROFUNDIDAD	m	1	21	41	
СОТА	msnm	908	888	868	
SÓLIDOS EN SUSPENSIÓN	mg/l	2,2			1,9
ALCALINIDAD TOTAL	mg CO₃Ca/l	73,2			84,0
DBO₅	mg O ₂ /I	0,6			0,4
DQO	mg O ₂ /I	7,9			7,9
FÓSFORO TOTAL	mg P/I	0,016	0,012	0,138	0,020
FOSFATOS	mg PO ₄ ³ /I	0,048	0,022	0,116	0,021
FOSFATOS	mg P/I	0,016	0,007	0,038	0,007
NITRÓGENO KJELDAHL	mg N/I	0,47	0,48	0,66	0,49
AMONIO TOTAL	mg NH ₄ /I	0,02	0,03	0,03	0,02
AMONIO TOTAL	mg N/I	0,02	0,02	0,03	0,02
NITRÓGENO ORGÁNICO	mg N/I	0,45	0,46	0,64	0,47
NITRATOS	mg NO₃/I	0,36	0,92	1,91	2,20
NITRATOS	mg N/I	0,08	0,21	0,43	0,50
NITRITOS	mg NO ₂ /I	0,000	0,007	0,001	0,004
NITRITOS	mg N/I	0,000	0,002	0,000	0,001
N INORGÁNICO	mg N/I	0,10	0,23	0,46	0,52
CLOROFILA a	μg/l	6,7			

EMBALSE:	MANSILLA			CÓDIGO:	ML3
CAMPAÑA:	3			FECHA:	31/03/2005
COTA MÁXIMA:	930			NIVEL:	925
		CÓDI	GO DEL	PUNTO DE	MUESTREO
PARÁMETRO	UNIDAD	E1S	E1M	E1F	T1
PROFUNDIDAD	m	1	18	54	
COTA	msnm	924	907	871	
SÓLIDOS EN SUSPENSIÓN	mg/l	2,0			4,5
ALCALINIDAD TOTAL	mg CO₃Ca/I	56,5			61,6
DBO ₅	mg O ₂ /I	0,5			0,4
DQO	mg O ₂ /I	4,0			4,0
FÓSFORO TOTAL	mg P/I	0,009	0,006	0,006	0,026
FOSFATOS	mg PO ₄ 3/I	0,011	0,010	0,015	0,035
FOSFATOS	mg P/I	0,004	0,003	0,005	0,011
NITRÓGENO KJELDAHL	mg N/I	0,78	0,93	2,93	0,85
AMONIO TOTAL	mg NH ₄ /I	0,02	0,03	0,03	0,04
AMONIO TOTAL	mg N/I	0,02	0,03	0,03	0,03
NITRÓGENO ORGÁNICO	mg N/I	0,76	0,90	2,90	0,82
NITRATOS	mg NO ₃ /I	1,30	1,19	1,21	1,40
NITRATOS	mg N/I	0,29	0,27	0,27	0,32
NITRITOS	mg NO ₂ /I	0,017	0,013	0,015	0,014
NITRITOS	mg N/I	0,005	0,004	0,005	0,004
N INORGÁNICO	mg N/I	0,32	0,30	0,30	0,35
CLOROFILA a	μ g/l	5,7			

EMBALSE:	MANSILLA			CÓDIGO:	ML4
CAMPAÑA:	4			FECHA:	07/07/2005
COTA MÁXIMA:	930			NIVEL:	924
		CÓDIGO	DEL PUI	NTO DE M	<i>JESTREO</i>
PARÁMETRO	UNIDAD	E1S	E1M	E1F	T1
PROFUNDIDAD	m	1	25	51	
COTA	msnm	923	899	873	
SÓLIDOS EN SUSPENSIÓN	mg/l	0,7			4,8
DBO₅	mg O ₂ /I	5,3			1,3
DQO	mg O ₂ /I	20,2			16,2
FÓSFORO TOTAL	mg P/I	0,009	0,023	0,021	0,036
FOSFATOS	mg PO ₄ ³/I	0,012	0,010	0,029	0,090
FOSFATOS	mg P/I	0,004	0,003	0,009	0,029
NITRÓGENO KJELDAHL	mg N/I	0,40	0,30	0,24	0,40
AMONIO TOTAL	mg NH ₄ /I	0,02	0,02	0,02	0,05
AMONIO TOTAL	mg N/I	0,02	0,01	0,02	0,04
NITRÓGENO ORGÁNICO	mg N/I	0,38	0,29	0,23	0,36
NITRATOS	mg NO₃/I	0,36	1,16	1,55	1,25
NITRATOS	mg N/I	0,08	0,26	0,35	0,28
NITRITOS	mg NO ₂ /I	0,015	0,008	0,006	0,021
NITRITOS	mg N/I	0,005	0,002	0,002	0,006
N INORGÁNICO	mg N/I	0,10	0,28	0,37	0,33
SULFUROS	mg S ⁻² /I			0,000	
CLOROFILA a	μ g/l	3,2			

ANEXO III. RESULTADOS BIOLÓGICOS

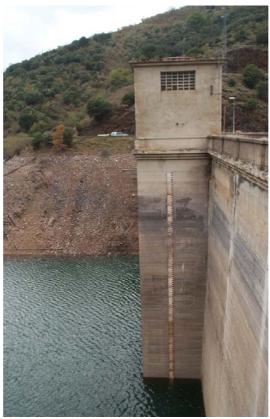
EMBALSE:	MANSILLA	CÓDIGO: ML1
CAMPAÑA:	1	FECHA: 10/08/2004
COTAMAX:	930	D. SECCHI: 3,4
NIVEL:	920	C.FÓTICA: 6,0
PARÁMETRO	UNIDAD	CÓDIGO DEL PUNTO DE MUESTREO
		E1S
PROFUNDIDAD	m	1
COTA	msnm	919
CLOROFILA a	μ g/l	3,00
Población total	n°cel/ml	554
Diversidad (H)	Bits	3,14
Clase BACILLARIOFICEA	n°cel/ml	114
Grupo CIANOBACTERIA	n°cel/ml	8
Clase CLOROFICEA	n°cel/ml	126
Clase CRIPTOFICEA	n°cel/ml	167
Clase CRISOFICEA	n°cel/ml	3
Clase DINOFICEA	n°cel/ml	128
Clase EUGLENOFICEA	n°cel/ml	0
Clase XANTOFICEA	n°cel/ml	0
Clase ZIGOFICEA	n°cel/ml	8
ESPECIES	TAXÓN	n° cel/ml
Amphora sp.	Bacillariofícea	1
Asterionella formosa	Bacillariofícea	6
Cyclotella sp.	Bacillariofícea	1
Fragilaria crotonensis	Bacillariofícea	72
Fragilaria ulna	Bacillariofícea	1
Gomphonema constrictum	Bacillariofícea	1
Melosira varians	Bacillariofícea	1
Navicula sp.	Bacillariofícea	10
Nitzschia acicularis	Bacillariofícea	16
Nitzschia obtusa	Bacillariofícea	1
Nitzschia palea	Bacillariofícea	4
Planktothrix sp.	Cianobacteria	8
Ankistrodesmus sp.	Clorofícea	4
Chlamydomonas sp.	Clorofícea	65
Eudorina elegans	Clorofícea	15
Oocystis lacustris	Clorofícea	20
Sphaerocystis schroeteri	Clorofícea	5
Tetraedron minimum	Clorofícea	17
Cryptomonas erosa	Criptofícea	3
Cryptomonas marssonii	Criptofícea	1
Cryptomonas ovata	Criptofícea	1
Rhodomonas minuta	Criptofícea	162
Mallomonas sp.	Crisofícea	3
Ceratium hirundinella	Dinofícea	1
Gymnodinium sp.	Dinofícea	126
Peridinium cinctum	Dinofícea	1
Cosmarium sp.	Zigofícea	4
Staurastrum sp.	Zigofícea	4

EMBALSE:	MANSILLA	CÓDIGO: ML2
CAMPAÑA:	2	FECHA: 05/11/2004
COTAMAX:	930	D. SECCHI: 3,0
NIVEL:	909	C.FÓTICA: 5,0
PARÁMETRO	UNIDAD	CÓDIGO DEL PUNTO DE MUESTREO
		E1S
PROFUNDIDAD	m	1
COTA	msnm	908
CLOROFILA a	μ g/l	6,70
Población total	n°cel/ml	1.515
Diversidad (H)	Bits	1,97
Clase BACILLARIOFICEA	n°cel/ml	1.246
Grupo CIANOBACTERIA	n°cel/ml	0
Clase CLOROFICEA	n°cel/ml	32
Clase CRIPTOFICEA	n°cel/ml	236
Clase CRISOFICEA	n°cel/ml	0
Clase DINOFICEA	n°cel/ml	0
Clase EUGLENOFICEA	n°cel/ml	0
Clase XANTOFICEA	n°cel/ml	0
Clase ZIGOFICEA	n°cel/ml	1
ESPECIES	TAXÓN	n° cel/ml
Asterionella formosa	Bacillariofícea	114
Aulacoseira granulata	Bacillariofícea	458
Aulacoseira italica	Bacillariofícea	670
Fragilaria crotonensis	Bacillariofícea	1
Navicula sp.	Bacillariofícea	1
Nitzschia acicularis	Bacillariofícea	2
Ankistrodesmus sp.	Clorofícea	1
Ankyra sp.	Clorofícea	2
Crucigenia tetrapedia	Clorofícea	2
Eudorina elegans	Clorofícea	20
Oocystis lacustris	Clorofícea	1
Scenedesmus sp.	Clorofícea	3
Tetraedron minimum	Clorofícea	3
Cryptomonas erosa	Criptofícea	4
Cryptomonas marssonii	Criptofícea	3
Rhodomonas minuta	Criptofícea	229
Mougeotia sp.	Zigofícea	1

EMBALSE:	MANSILLA	CÓDIGO:	ML3
CAMPAÑA:	3	FECHA:	31/03/2005
COTAMAX:	930	D. SECCHI:	2,8
NIVEL:	925	C.FÓTICA:	5,0
PARÁMETRO	UNIDAD	CÓDIGO DEL PUNTO D	E MUESTREO
		E1S	
PROFUNDIDAD	m	1	
COTA	msnm	924	
CLOROFILA a	μ g/l	5,70	
Población total	n°cel/ml	6.263	
Diversidad (H)	Bits	0,42	
Clase BACILLARIOFICEA	n°cel/ml	5.858	
Grupo CIANOBACTERIA	n°cel/ml	0	
Clase CLOROFICEA	n°cel/ml	42	
Clase CRIPTOFICEA	n°cel/ml	356	
Clase CRISOFICEA	n°cel/ml	1	
Clase DINOFICEA	n°cel/ml	5	
Clase EUGLENOFICEA	n°cel/ml	1	
Clase XANTOFICEA	n°cel/ml	0	
Clase ZIGOFICEA	n°cel/ml	0	
ESPECIES	TAXÓN	nº cel/ml	
Achnanthes lanceolata	Bacillariofícea	1	
Aulacoseira italica	Bacillariofícea	1	
Cyclotella sp.	Bacillariofícea	5.853	
Diatoma vulgaris	Bacillariofícea	1	
Fragilaria crotonensis	Bacillariofícea	1	
Nitzschia acicularis	Bacillariofícea	1	
Chlorococcum sp.	Clorofícea	25	
Chlorogonium sp.	Clorofícea	6	
Elakatothrix genevensis	Clorofícea	1	
Pandorina morum	Clorofícea	10	
Cryptomonas erosa	Criptofícea	1	
Cryptomonas marssonii	Criptofícea	1	
Cryptomonas sp.	Criptofícea	15	
Rhodomonas minuta	Criptofícea	339	
Stelexomonas sp.	Crisofícea	1	
Gymnodinium sp.	Dinofícea	5	
Trachelomonas sp.	Euglenofícea	1	

EMBALSE:	MANSILLA	CÓDIGO: ML4	
CAMPAÑA:	4	FECHA: 07/07/2005	
COTAMAX:	930	D. SECCHI: 5,9	
NIVEL:	924	C.FÓTICA: 10,0	
PARÁMETRO	UNIDAD	CÓDIGO DEL PUNTO DE MUESTREO	_
TANAMETHO	ONIDAD	E1S	
PROFUNDIDAD	m	1	
COTA	msnm	923	
CLOROFILA a	μg/l	3,20	
Población total	n°cel/ml	293	
Diversidad (H)	Bits	2,71	
Clase BACILLARIOFICEA	n°cel/ml	50	
Grupo CIANOBACTERIA	n°cel/ml	0	
Clase CLOROFICEA	n°cel/ml	156	
Clase CRIPTOFICEA	n°cel/ml	80	
Clase CRISOFICEA	n°cel/ml	1	
Clase DINOFICEA	n°cel/ml	5	
Clase EUGLENOFICEA	n°cel/ml	0	
Clase XANTOFICEA	n°cel/ml	0	
Clase ZIGOFICEA	n°cel/ml	1	
ESPECIES	TAXÓN	n° cel/ml	
Achnanthes sp.	Bacillariofícea	2	
Amphora sp.	Bacillariofícea	1	
Aulacoseira italica	Bacillariofícea	1	
Cyclotella comta	Bacillariofícea	41	
Fragilaria sp.	Bacillariofícea	1	
Fragilaria ulna	Bacillariofícea	1	
Navicula sp.	Bacillariofícea	2	
Nitzschia acicularis	Bacillariofícea	1	
Asterococcus sp.	Clorofícea	1	
Elakatothrix gelatinosa	Clorofícea	2	
Eudorina sp.	Clorofícea	11	
Monoraphidium sp.	Clorofícea	9	
Oocystis sp.	Clorofícea	4	
Pandorina morum	Clorofícea	1	
Scenedesmus sp.	Clorofícea	5	
Schroederia setigera	Clorofícea	3	
Sphaerocystis schroeteri	Clorofícea	118	
Tetraedron minimum	Clorofícea	1	
Willea sp.	Clorofícea	1	
Cryptomonas marssonii	Criptofícea	2	
Cryptomonas ovata	Criptofícea	1	
Cryptomonas sp.	Criptofícea	2	
Rhodomonas minuta	Criptofícea	75	
Mallomonas sp.	Crisofícea	1	
Ceratium hirundinella	Dinofícea	1	
Peridinium sp.	Dinofícea	4	
Staurastrum sp.	Zigofícea	1	

REPORTAJE FOTOGRÁFICO



Presa del embalse de Mansilla. Verano de 2004 (10/08/2004)

Panorámica del embalse desde la presa. Primavera de 2005 (31/03/2005)

Detalle de la presa. Primavera de 2005 (31/03/2005)

Vista de la presa desde la estación de muestreo (E1). Verano de 2005 (07/07/2005)

Río Najerilla, tributario principal del embalse de Mansilla. Verano de 2005 (07/07/2005)

APÉNDICE 1: FICHA DESCRIPTIVA DEL EMBALSE

Datos generales de embalse

Fecha actualización: Junio de 2006

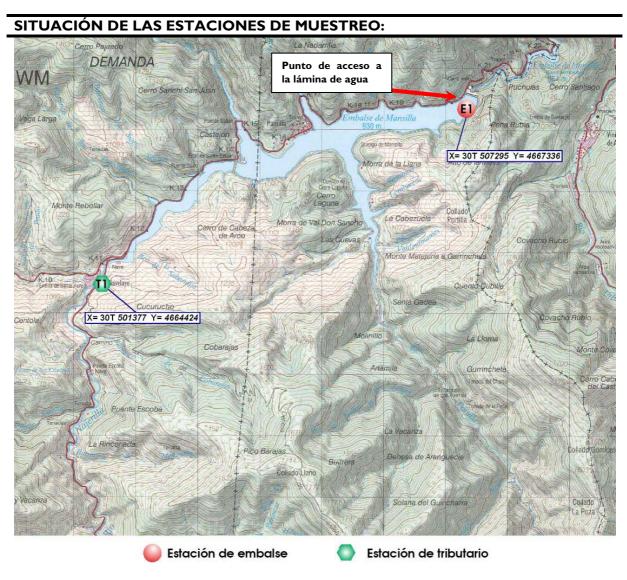
EMBALSE: MANSILLA CÓDIGO: ML

LOCALIZACIÓN:

Autonomía: La Rioja Provincia: La Rioja Municipio: Mansilla

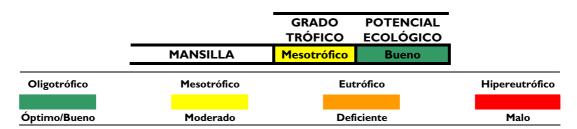
Situación en C.H.Ebro

CARACTERÍSTICAS GENERALES DEL EMBALSE:


Tributario principal: Najerilla Otros tributarios:

Año de terminación: 1960 Propietario: Estado Cuenca a la que pertenece: Najerilla Altitud (msnm): 930 Capacidad total (hm³): 68 Capacidad útil (hm³): Longitud máxima (km): 6,3 Perímetro (km): 14
Profundidad máxima (m): 70 Profundidad media (m): 27,6

Usos principales: Riego, Otros usos: Abastecimiento


Panorámica del embalse (10/08/2004)

N° Plano/s 1:50.000: 278

DIAGNÓSTICO DE LA CALIDAD

CARACTERÍSTICAS FÍSICO-QUÍMICAS: (Datos referidos a la estación de presa -EI-)

T ^a superficie (°C): 20,94 T ^a fondo (°C): 6,92 T ^a TI (°C): 16,24 Disco de Secc EI 3,35 Termoclina: 9	p	García uperficie (ud): uperficie (ud): pH TI (ud):	-	Fecha de muestreo: Conductividad superficie (μS/cm):			
Ta fondo (°C): 6,92 Ta TI (°C): 16,24 Disco de Seco El 3,35 Termoclina: 9	p	H fondo (ud):	-		160		
Disco de Secc El 3,35 Termoclina:	•	` '	7.49				
Disco de Secc El 3,35 Termoclina:	Tran	SH TI (ud).	.,	Conductividad fondo (µS/cm):			
El 3,35 Termoclina:	Trans	pri i i (uu).	8,69	Conductividad T1 (μS/cm):	279		
EI 3,35 Termoclina:	Transparencia Disco de Secchi (m) Capa fótica (m) -D.S. x 1,7-						
Termoclina:	thi (m)	Capa fótica	(m) -D.S.	x 1,7-			
			6				
Condiciones anóxicas:	Si	Pı	rofundidad	d (m): 10			
	No	Grosor ca	pa anóxica	a (m): -			
	eador: David C			Fecha de muestreo:			
T ^a superficie (°C): 12,62	•	uperficie (ud):	-	Conductividad superficie (μ S/cm):			
T ^a fondo (°C): 7,68	р	H fondo (ud):		Conductividad fondo (µS/cm):			
T ^a T _I (°C): 8,95		pH TI (ud):	8,21	Conductividad T1 (μS/cm):	334		
		sparencia					
Disco de Seco	hi (m)	Capa fótica		x 1,7-			
EI 3			5				
	No		rofundidad	. ,			
Condiciones anóxicas:	No	Grosor ca	pa anóxica	a (m): -			
23 041424 54		,			21/22/222		
	eador: David C		0.04	Fecha de muestreo:			
T ^a superficie (°C): 8,50 T ^a fondo (°C): 4,13	•	uperficie (ud):	-	Conductividad superficie (µS/cm): Conductividad fondo (µS/cm):			
T ^a T1 (°C): 9,83	Р	H fondo (ud):	-	Conductividad TI (µS/cm):			
1 11 (C): 4,63	Tuon	pH TI (ud):	0,43	Conductividad 11 (µ3/cm):	143		
Diagram de Cons		sparencia	(\ D.C	17			
Disco de Seco	ini (m)	Capa fótica	• •	<u> </u>			
EI 2,75			5				
	No		rofundidad				
Condiciones anóxicas:	No	Grosor ca	pa anóxica	a (m): -			
4ª CAMPAÑA Muestro	eador: David C	García		Fecha de muestreo:	07/07/2005		
T ^a superficie (°C): 20,35	pH si	uperficie (ud):	8.94	Conductividad superficie (µS/cm):	158		
T ^a fondo (°C): 4,76	•	H fondo (ud):		Conductividad fondo (µS/cm):			
Ta TI (°C): 19,12	•	pH TI (ud):		Conductividad TI (µS/cm):			
	Trans	sparencia					
Disco de Seco		Capa fótica	(m) -D.S.	x 1,7-			
EI 5,95			10				
	Si	Pi	rofundidad	d (m): 9			
Condiciones anóxicas:	No	Grosor ca		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
Termoclina:	Si	Pı		d (m): 9			

CARACTERÍSTICAS QUÍMICAS Y BIOLÓGICAS: (Datos referidos a la estación de presa -E1-)

Iª CAMPAÑA		Fec	ha de muest	reo: 07/08	3/2004
		,	DIGO DEL P		
PARÁMETRO	UNIDAD	MLEIS	MLEIT	MLEIF	MLTI
PROFUNDIDAD	m	ī	17	55	
FÓSFORO TOTAL	mg P/I	0,020	0,025	0,008	0,052
OSFATOS	mg P/I	0,004	0,012	0,003	0,052
NITRÓGENO KJELDAHL	mg N/I	0,29	0,34	0,36	0,52
AMONIO TOTAL	mg N/I	0,00	0,00	0,00	0,02
NITRATOS	mg N/I	0,00	0,32	0,08	0,46
NITRITOS	mg N/I	0,004	0,002	0,004	0,019
CLOROFILA a	µg/l	3,0	·		<u> </u>
N° DE CÉLULAS TOTALES	n° cel/ml	554			
CLASE PREDOMINANTE:	Criptofícea		N° celula	ıs/ml: 167	
ESPECIE PREDOMINANTE:	Rhodomonas	minuta	N° celula	ıs/ml: 162	
2ª CAMPAÑA		Fech	na de muest	reo: 05/11	/2004
PARÁMETRO	UNIDAD	MLEIS	MLEIM	MLEIF	MLTI
PROFUNDIDAD	m	ı	21	41	
FÓSFORO TOTAL	mg P/I	0,016	0,012	0,138	0,020
FOSFATOS	mg P/I	0,016	0,007	0,038	0,007
NITRÓGENO KJELDAHL	mg N/I	0,47	0,48	0,66	0,49
AMONIO TOTAL	mg N/I	0,02	0,02	0,03	0,02
NITRATOS	mg N/I	0,08	0,21	0,43	0,50
NITRITOS	mg N/I	0,000	0,002	0,000	0,001
CLOROFILA a	μg/l	6,7		-	·
N° DE CÉLULAS TOTALES	n° cel/ml	1.515			
CLASE PREDOMINANTE:	Bacillariofíce	ea	N° celula	s/ml: 1.246	
ESPECIE PREDOMINANTE:	Aulacoseira i		N° celula	s/ml: 670	
3ª CAMPAÑA		Fec	ha de muest	reo: 31/03	3/2005
PARÁMETRO	UNIDAD	MLEIS	MLEIM	MLEIF	MLTI
PROFUNDIDAD	m	I	18	54	
ÓSFORO TOTAL	mg P/I	0,009	0,006	0,006	0,026
OSFATOS	mg P/I	0,004	0,003	0,005	0,011
NITRÓGENO KJELDAHL	mg N/I	0,78	0,93	2,93	0,85
AMONIO TOTAL	mg N/I	0,02	0,03	0,03	0,03
NITRATOS	mg N/I	0,29	0,27	0,27	0,32
NITRITOS	mg N/I	0,005	0,004	0,005	0,004
CLOROFILA a	μg/l	5,7	,	-,	, -
N° DE CÉLULAS TOTALES	րջ/։ n° cel/ml	6.263			
CLASE PREDOMINANTE:	Bacillariofíce		N° celula	ıs/ml: 5.858	
ESPECIE PREDOMINANTE:	Cyclotella sp			ıs/ml: 5.853	
4ª CAMPAÑA		Fec	ha de muest	reo: 07/07	//2005
PARÁMETRO	UNIDAD	MLEIS	MLEIM	MLEIF	MLTI
PROFUNDIDAD	m	I	25	51	
ÓSFORO TOTAL	mg P/I	0,009	0,023	0,021	0,036
OSFATOS	mg P/I	0,004	0,003	0,009	0,029
NITRÓGENO KJELDAHL	mg N/I	0,40	0,30	0,24	0,40
AMONIO TOTAL	mg N/I mg N/I	0,02	0,01	0,02	0,04
NITRATOS	_	0,02	0,26	0,35	0,28
NITRATOS	mg N/I	0,005	0,002	0,002	0,006
411 K11 U3	mg N/I	3,2	J, J J L	J,002	3,000
CLODOFILA -	μg/l	٤,∠			
	. •	202			
CLOROFILA a N° DE CÉLULAS TOTALES CLASE PREDOMINANTE:	n° cel/ml Clorofícea	293	Nº colula	ıs/ml: 156	

ADICIONAL INFORME EMBALSE DE MANSILLA 2004-2005

Durante el año 2022 se han revisado los datos del embalse de Mansilla recopilados durante los años 2004 y 2005, en aplicación del Real Decreto 817/2015, de 11 de septiembre, por el que se establecen los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental, a partir de la trasposición de la Directiva Marco del Agua (DMA).

La metodología utilizada ha consistido en obtener del informe de dicho año los datos necesarios para estimar de nuevo el estado trófico y el potencial ecológico y, recalcular el valor correspondiente en cada variable y en el estado final del embalse, utilizando las métricas publicadas en 2015, lo que permite comparar el estado de los embalses en un ciclo interanual de forma homogénea.

En cada apartado considerado se indica la referencia del apartado del informe original al que se refiere este trabajo adicional.

1. ESTADO TRÓFICO

Para evaluar el grado de eutrofización o estado trófico de una masa de agua se aplican e interpretan una serie de indicadores de amplia aceptación. En cada caso, se ha tenido en cuenta el valor de cada indicador en función de las características limnológicas básicas de los embalses. Así, se han podido interpretar las posibles incoherencias entre los diversos índices y parámetros y establecer la catalogación trófica final en función de aquellos que, en cada caso, responden a la eutrofización de las aguas.

Dentro del presente estudio se han considerado los siguientes índices y parámetros:

a) Concentración de nutrientes. Fósforo total (PT)

La concentración de fósforo total en el epilimnion del embalse es un parámetro decisivo en la eutrofización ya que suele ser el factor limitante en el crecimiento y reproducción de las poblaciones algales o producción primaria. De entre los índices conocidos, se ha adoptado en el presente estudio, el utilizado por la Organización para la Cooperación y el Desarrollo Económico (OCDE) resumido en la tabla A1, ya que es

el que mejor refleja el grado trófico real en los casos estudiados y además es el de más amplio uso a nivel mundial y en particular en la Unión Europea (UE), España y la propia Confederación Hidrográfica del Ebro (CHE). Desde 1984 se demostró que los criterios de la OCDE, que relacionan la carga de nutrientes con las respuestas de eutrofización, eran válidos para los embalses españoles.

Tabla A1. Niveles de calidad según la concentración de fósforo total.

Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración PT (µg					
P/L)	0-4	4-10	10-35	35-100	>100

b) Fitoplancton (Clorofila a, densidad algal)

A diferencia del anterior, el fitoplancton es un indicador de respuesta trófica y, por lo tanto, integra todas las variables causales, de modo que está influido por otros condicionantes ambientales además de estarlo por los niveles de nutrientes. Se utilizan dos parámetros como estimadores de la biomasa algal en los índices: concentración de clorofila a en la zona fótica (µg/L) y densidad celular (nº células/ml).

Al contar en este estudio mayoritariamente con sólo una campaña de muestreo, y por tanto no contar con una serie temporal que nos permitiera la detección del máximo anual, se utilizaron las clases de calidad relativas a la media anual (tabla A2). La utilización de los límites de calidad relativos a la media anual de clorofila se basó en el hecho de que los muestreos fueron realizados durante la estación de verano. Según la bibliografía limnológica general, el verano coincidiría con un descenso de la producción primaria motivado por el agotamiento de nutrientes tras el pico de producción típico de finales de primavera. Por ello, la utilización de los límites o rangos relativos al máximo anual resultaría inadecuada.

Para la densidad celular, basamos nuestros límites de estado trófico en la escala logarítmica basada en los estudios limnológicos de Margalef, ya utilizada para incluir más clases de estado trófico en otros estudios (tabla A2). Estos resultados se ajustaban de forma más aproximada a los obtenidos mediante otras métricas estándar de la OCDE como las de P total o clorofila. En el presente estudio, los índices elegidos son los siguientes:

Tabla A2. Niveles de calidad según la clorofila a y la densidad algal del fitoplancton.

Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Clorofila a (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad (cél./ml)	<100	100-1000	1000-10000	10000-100000	>100000

c) Transparencia de la columna de agua. Disco de Secchi (DS)

Por su parte, la transparencia, medida como profundidad de visibilidad del disco de Secchi (media y mínimo anual en m), está también íntimamente relacionada con la biomasa algal, aunque más indirectamente, ya que otros factores como la turbidez debida a sólidos en suspensión, o los fenómenos de dispersión de la luz que se producen en aguas carbonatadas, afectan a esta variable.

Se utilizaron las clases de calidad relativas al mínimo anual de transparencia según criterios OCDE. Se utilizaron en este caso los rangos relativos al mínimo anual (tabla A3) debido a varios factores: por un lado, la transparencia en embalses es generalmente menor que en lagos; por otro lado, en verano se producen resuspensiones de sedimentos como consecuencia de los desembalses para regadío, y por último, la mayoría de los embalses muestreados son de aguas carbonatadas, con lo que la profundidad de Secchi subestimaría también la transparencia.

Tabla A3. Niveles de calidad según la transparencia.

Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Disco Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7

Catalogación trófica final

Se han considerado la totalidad de los índices expuestos, que se especifican en la tabla A4, estableciéndose el estado trófico global de los embalses estudiados según la metodología descrita a continuación, utilizando el valor promedio de los dos muestreos en su caso.

Tabla A4. Resumen de los parámetros indicadores de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración PT (μg	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cél./ml)	<100	100-1000	1000-10000	10000-100000	>100000

Sobre la base de esta propuesta, en la tabla A5 se incluye la catalogación de las diferentes masas de agua por parámetro. Así, para cada uno de los embalses, se asignó un valor numérico (de 1 a 5) según cada clase de estado trófico.

Tabla A5. Valor numérico asignado a cada clase de estado trófico.

ESTADO TRÓFICO	VALORACIÓN
Ultraoligotrófico	1
Oligotrófico	2
Mesotrófico	3
Eutrófico	4
Hipereutrófico	5

La valoración del estado trófico global final se calculó mediante la *media* de los valores anteriores, re-escalada a cinco rangos de estado trófico (es decir, el intervalo 1-5, de 4 unidades, dividido en 5 rangos de 0,8 unidades de amplitud).

2. ESTADO DE LA MASA DE AGUA

El **estado** de una masa de agua es el grado de alteración que presenta respecto a sus condiciones naturales, y viene determinado por el *peor valor* de su estado ecológico y químico.

El <u>estado ecológico</u> es una expresión de la calidad de la estructura y el funcionamiento de los ecosistemas acuáticos asociados a las aguas superficiales en relación con las condiciones de referencia (es decir, en ausencia de alteraciones). En el caso de los embalses se denomina potencial ecológico en lugar de estado ecológico. Se determina a partir de indicadores de calidad (biológicos y fisicoquímicos).

 El <u>estado químico</u> de las aguas es una expresión de la calidad de las aguas superficiales que refleja el grado de cumplimiento de las normas de calidad ambiental de las sustancias prioritarias y otros contaminantes.

2.1. POTENCIAL ECOLÓGICO

2.1.1. INDICADORES DE CALIDAD BIOLÓGICOS: FITOPLANCTON

Como consecuencia de la aprobación de la IPH (Instrucción de Planificación Hidrológica, Orden ARM/2656/2008), se ha realizado una aproximación al <u>potencial ecológico</u> para el elemento de calidad <u>fitoplancton</u> denominada *propuesta normativa*. En ella se establecen las condiciones de máximo potencial para los siguientes parámetros: clorofila a, biovolumen, Índice de Grupos Algales (IGA) y porcentaje de cianobacterias, en función de la tipología del embalse.

Se debe seguir el procedimiento descrito en el Protocolo MFIT-2013 Versión 2 para el cálculo del RCE de cada uno de los cuatro parámetros:

- Cálculo de Ratio de Calidad Ecológico (RCE)

Cálculo para clorofila a:

RCE= [(1/Chla Observado) / (1/Chla Máximo Potencial Ecológico)]

Cálculo para biovolumen:

RCE= [(1/biovolumen Observado) / (1/ biovolumen Máximo Potencial Ecológico)]

Cálculo para el Índice de Grupos Algales (IGA):

RCE= [(400-IGA Observado) / (400- IGA Máximo Potencial Ecológico)]

Cálculo para el porcentaje de cianobacterias:

RCE= [(100 - % cianobacterias Observado) / (100 - % cianobacterias Máximo Potencial Ecológico)]

1) Concentración de clorofila a

Del conjunto de pigmentos fotosintetizadores de las microalgas de agua dulce, la clorofila a se emplea como un indicador básico de biomasa fitoplanctónica. Todos los grupos de microalgas contienen clorofila a como pigmento principal, pudiendo llegar a

representar entre el 1 y el 2 % del peso seco total. La clasificación del potencial ecológico de acuerdo con la concentración de clorofila *a* se indica en la tabla A6.

Tabla A6. Clases de potencial ecológico según el RCE de la concentración de clorofila a.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,211	0,210 - 0,14	0,13 - 0,07	< 0,07
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,433	0,432 - 0,287	0,286 - 0,143	< 0,143
Rango <i>Tipo 12</i>	> 0,195	0,194 – 0,13	0,12 - 0,065	< 0,065
Rango <i>Tipo 13</i>	> 0,304	0,303 - 0,203	0,202 - 0,101	< 0,101
Valoración de cada clase	2	3	4	5

2) Biovolumen algal

El biovolumen es una medida mucho más precisa de la biomasa algal, por tener en cuenta el tamaño o volumen celular de cada especie, además del número de células. La clasificación del potencial ecológico de acuerdo al biovolumen de fitoplancton se indica en la tabla A7.

Tabla A7. Clases de potencial ecológico según el RCE del biovolumen algal del fitoplancton.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,189	0,188 - 0,126	0,125 - 0,063	< 0,063
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,362	0,361 – 0,24	0,23 - 0,12	< 0,12
Rango Tipo 12	> 0,175	0,174 – 0,117	0,116 – 0,058	< 0,058
Rango Tipo 13	> 0,261	0,260 - 0,174	0,173 – 0,087	< 0,087
Valoración de cada clase	2	3	4	5

3) Índice de grupos algales (IGA)

Se ha aplicado un índice basado en el biovolumen relativo de diferentes grupos algales del fitoplancton, denominado *IGA*, y que viene siendo utilizado por CHE desde 2010.

El índice IGA se expresa:

$$Iga = \frac{1 + 0.1*Cr + Cc + 2*(Dc + Chc) + 3*Vc + 4*Cia}{1 + 2*(D + Chc) + Chnc + Dhc}$$

Siendo,

Cr	Criptófitos	Cia	Cianobacterias
Сс	Crisófitos coloniales	D	Dinoflageladas
Dc	Diatomeas coloniales	Cnc	Crisófitos no coloniales
Chc	Clorococales coloniales	Chnc	Clorococales no coloniales
Vc	Volvocales coloniales	Dnc	Diatomeas no coloniales

En cuanto al *IGA*, se han considerado los rangos de calidad establecidos en la tabla A8.

Tabla A8. Clases de potencial ecológico según el RCE del Índice de Grupos Algales (IGA).

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,974	0,973 - 0,649	0,648 - 0,325	< 0,325
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,982	0,981 – 0,655	0,654 - 0,327	< 0,327
Rango Tipo 12	> 0,929	0,928 - 0,619	0,618 – 0,31	< 0,31
Rango Tipo 13	> 0,979	0,978 - 0,653	0,652 - 0,326	< 0,326
Valoración de cada clase	2	3	4	5

4) Porcentaje de cianobacterias

El aumento de la densidad relativa de cianobacterias se ha relacionado en numerosas ocasiones con procesos de eutrofización.

Para el cálculo del porcentaje de cianobacterias se ha utilizado el procedimiento descrito en el Protocolo de análisis y cálculo de métricas de fitoplancton en lagos y embalses Versión 2 (MAGRAMA, 2016). Se aplica para el cálculo la siguiente fórmula:

$$\%CIANO = \frac{\text{BVOLcia} - \left[\text{BVOLchr} - \left(\text{BVOLmic} + \text{BVOLwor}\right)\right]}{BVOLtot}$$

Donde: BVOL_{CIA} Biovolumen de cianobacterias totales

BVOL_{CHR} Biovolumen de Chroococcales

BVOL_{MIC} Biovolumen de *Microcystis*

BVOLWOR Biovolumen de Woronichinia

BVOL_{TOT} Biovolumen total de fitoplancton

Los valores de cambio de clases se establecen como se muestran en la tabla A9.

Tabla A9. Clases de potencial ecológico según el RCE del porcentaje de cianobacterias.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,908	0,907 - 0,607	0,606 - 0,303	< 0,303
Rango Tipos 7, 8, 9, 10 y 11	> 0,715	0,714 - 0,48	0,47 - 0,24	< 0,24
Rango Tipo 12	> 0,686	0,685 - 0,457	0,456 - 0,229	< 0,229
Rango <i>Tipo 13</i>	> 0,931	0,930 - 0,621	0,620 - 0,31	< 0,31
Valoración de cada clase	2	3	4	5

Posteriormente, es necesario llevar a cabo la *transformación de los valores de RCE obtenidos* a una escala numérica equivalente para los cuatro indicadores (RCEtrans). Las ecuaciones varían en función del tipo de embalse.

Tipos 1, 2 y 3

Clorofila a	
RCE>0,21	RCE _{trans} = 0,5063 x RCE + 0,4937
RCE ≤0,21	RCE _{trans} = 2,8571 x RCE
1000 =0,21	TROLIfans - 2,007 FX ROL

Biovolumen	
RCE >0,19	RCE _{trans} = 0,4938 x RCE + 0,5062
RCE ≤0,19	RCE _{trans} = 3,1579 x RCE

% Cianobacterias	
RCE >0,91	RCE _{trans} = 4,4444 x RCE - 3,4444
RCE ≤0,91	RCE _{trans} = 0,6593 x RCE

Índice de Grupos Algales (IGA)	
RCE >0,9737	RCE _{trans} = 15,234 x RCE - 14,233
RCE ≤0,9737	RCE _{trans} = 0,6162 x RCE

Tipos 7, 8, 9, 10 y 11

Clorofila a	
RCE>0,43	RCE _{trans} = 0,7018 x RCE + 0,2982
RCE ≤0,43	RCE _{trans} = 1,3953 x RCE

Biovolumen	
RCE >0,36	RCE _{trans} = 0,625 x RCE + 0,375
RCE ≤0,36	RCE _{trans} = 1,6667 x RCE

	% Cianobacterias	
	RCE >0,72	RCE _{trans} = 1,4286 x RCE - 0,4286
ſ	RCE ≤0,72	RCE _{trans} = 0,8333 x RCE

Índice de Grupos Algales (IGA)	
RCE >0,9822	RCE _{trans} = 22,533 x RCE - 21,533
RCE ≤0,9822	RCE _{trans} = 0,6108 x RCE

Tipos 6 y 12

Clorofila a	
RCE >0,195	RCE _{trans} =0,497x RCE + 0,503
RCE ≤ 0,195	RCE _{trans} = 3,075 x RCE

Biovolumen		
	RCE > 0,175	RCE _{trans} = 0,4851 x RCE + 0,5149
Γ	RCE ≤ 0,175	RCE _{trans} = 3,419 x RCE

% Cianobacterias	
RCE > 0,686	RCE _{trans} = 1,2726x - 0,2726
RCE ≤ 0.686	RCE _{trans} = 0.875 x RCE

Índice de Grupos Algales (IGA)	
RCE > 0,929	$RCE_{trans} = 5,6325x - 4,6325$
RCE ≤ 0.929	RCE _{trans} = 0,6459 x RCE

Tipo 13

Clorofila a		
RCE > 0,304	RCE _{trans} = 0,575 x RCE + 0,425	
RCE ≤ 0,304	RCE _{trans} = 1,9714 x RCE	

Biovolumen		
RCE > 0,261	RCE _{trans} = 0,541x RCE + 0,459	
RCE ≤ 0,261	RCE _{trans} = 2,3023 x RCE	

% Cianobacterias		
RCE > 0,931	RCE _{trans} = 5,7971 x RCE - 4,7971	
RCE ≤ 0,931	RCE _{trans} = 0,6445 x RCE	

Índice de Grupos Algales (IGA)		
RCE > 0,979 RCE _{trans} = 18,995 x RCE - 17,995		
$RCE \le 0.979$ $RCE_{trans} = 0.6129 \times RCE$		

Para la combinación de los distintos indicadores representativos del elemento de calidad fitoplancton se hallará la *media* de los RCE transformados correspondientes a los parámetros "abundancia-biomasa" y "composición". La combinación de los RCE transformados se llevará a cabo primero para los indicadores de clorofila y biovolumen, ambos representativos de la <u>abundancia</u>. La combinación se hará mediante las *medias* de los RCE transformados.

Posteriormente se llevará a cabo la combinación de los indicadores representativos de la <u>composición</u>: porcentaje de cianobacterias y el IGA. La combinación se hará mediante las *medias* de los RCE transformados. Finalmente, para la combinación de los indicadores de composición y abundancia-biomasa se hará la *media aritmética*.

El valor final de la combinación de los RCE transformados se clasificará de acuerdo a la siguiente escala de la tabla A10:

Tabla A10. Ratios de calidad según el índice de potencial ecológico normativo RCEtrans.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
RCEtrans	> 0,6	0,4-0,6	0,2-0,4	<0,2
Valoración de cada clase	2	3	4	5

Tabla A11. Valores de referencia propios del tipo (VR_t) y límites de cambio de clase de potencial ecológico (B⁺/M, Bueno o superior-Moderado; M/D, Moderado-Deficiente; D/M, Deficiente-Malo) de los indicadores de los elementos de calidad de embalses (*RD 817/2015*). Se han incluido sólo los tipos de embalses presentes en el ESTUDIO.

Tipo	Elemento	Parámetro	Indicador	VRt	B ⁺ /M (RCE)	M/D (RCE)	D/M (RCE)
		D:	Clorofila a mg/m ³	2,00	0,211	0,14	0,07
		Biomasa	Biovolumen mm³/L	0,36	0,189	0,126	0,063
Tipo 1	Fitoplancton		Índice de Catalán (IGA)	0,10	0,974	0,649	0,325
		Composición	Porcentaje de cianobacterias	0,00	0,908	0,607	0,303
			Clorofila a mg/m ³	2,60	0,433	0,287	0,143
		Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 7	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Diamana	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
		Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 9	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Diaman	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
		Biomasa	Biovolumen mm³/L	0,76	0,362	0,24	0,12
Tipo 10	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
	Composición		Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Diamasa	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
		Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 11	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		D:	Clorofila a mg/m ³	2,40	0,195	0,13	0,065
		Biomasa	Biovolumen mm³/L	0,63	0,175	0,117	0,058
Tipo 12	Fitoplancton		Índice de Catalán (IGA)	1,50	0,929	0,619	0,31
	Composición		Porcentaje de cianobacterias	0,10	0,686	0,457	0,229
		Piomoso	Clorofila a mg/m ³	2,10	0,304	0,203	0,101
		Biomasa	Biovolumen mm³/L	0,43	0,261	0,174	0,087
Tipo 13	Fitoplancton		Índice de Catalán (IGA)	1,10	0,979	0,653	0,326
		Composición	Porcentaje de cianobacterias	0,00	0,931	0,621	0,31

2.1.2. INDICADORES DE CALIDAD FISICOQUÍMICOS

Todavía la normativa no ha desarrollado qué indicadores fisicoquímicos se emplean en embalses, pero por similitud con los que se recogen para lagos (Real Decreto 817/2015) se utilizan los siguientes:

1) Transparencia

La transparencia es un elemento válido para evaluar el grado trófico del embalse; tiene alta relación con la productividad biológica; y además tiene rangos establecidos fiables y de utilidad para el establecimiento de los límites de clase del potencial ecológico. Se ha evaluado a través de la profundidad de visión del disco de Secchi (DS), considerando su valor para la obtención de las distintas clases de potencial (tabla A12).

Tabla A12. Clases de potencial ecológico según la profundidad de visión del Disco de Secchi.

Clase de potencial ecológico	Muy Bueno	Bueno	Moderado
Disco de Secchi (DS, m)	> 6	6 - 3	< 3
Valoración de cada clase	1	2	3

2) Condiciones de oxigenación

Representa un parámetro secundario de la respuesta trófica que viene a indicar la capacidad del sistema para asimilar la materia orgánica autóctona, generada por el propio sistema a través de los productores primarios en la capa fótica, y la materia orgánica alóctona, es decir, aquella que procede de fuentes externas al sistema, como la procedente de focos de contaminación puntuales o difusos.

Se ha evaluado estimando la reserva media de oxígeno hipolimnético en el periodo de muestreo, correspondiente al periodo de estratificación. En el caso de embalses no estratificados se consideró la media de oxígeno en toda la columna de agua. Las clases consideradas han sido las correspondientes a la concentración de oxígeno en la columna de agua; parámetro vital para la vida piscícola. En la tabla A13 se resumen los límites establecidos.

Tabla A13. Clases de potencial ecológico según la concentración de oxígeno disuelto en el hipolimnion o en toda la columna de agua, cuando el embalse no está estratificado.

Clase de potencial ecológico	Muy Bueno	Bueno	Moderado
Concentración hipolimnética (mg/L O ₂)	> 8	8 - 6	< 6
Valoración de cada clase	1	2	3

3) Concentración de nutrientes

En este caso se ha seleccionado el fósforo total (PT), ya que su presencia a determinadas concentraciones en un embalse acarrea procesos de eutrofización, pues en la mayoría de los casos es el principal elemento limitante para el crecimiento de las algas.

Se ha empleado el resultado obtenido en la muestra integrada, considerando los criterios de la OCDE especificados en la tabla A14 (OCDE, 1982) adaptado a los intervalos de calidad del RD 817/2015.

Tabla A14. Clases de potencial ecológico según la concentración de fósforo total.

Clase de potencial ecológico	Muy Bueno	Bueno	Moderado
Concentración de PT (μg P/L)	0 - 4	4 -10	> 10
Valoración de cada clase	1	2	3

Si se toman varios datos anuales, se hace la *mediana* de los valores anuales.

Posteriormente se elige el *peor valor* de los tres indicadores (transparencia, condiciones de oxigenación y fósforo total).

4) Sustancias preferentes y contaminantes específicos de cuenca

Dentro de los indicadores fisicoquímicos también se tienen en cuenta las **sustancias preferentes y contaminantes específicos de cuenca.** El valor medio de los datos anuales se revisa para ver si *cumple* o no con la Norma de Calidad Ambiental (NCA) del Anexo V del RD 817/2015. Si incumple supone asignarle para los indicadores fisicoquímicos la categoría de moderado.

Tabla A15. Clases de potencial ecológico para sustancias preferentes y contaminantes específicos de cuenca.

Clase de potencial ecológico	Muy Bueno	Moderado
Sustancias preferentes y contaminantes específicos de cuenca	Cumple NCA	No cumple NCA
Valoración de cada clase	2	3

El <u>potencial ecológico</u> resulta del *peor valor* entre los indicadores biológicos y fisicoquímicos.

Tabla A16. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico
Bueno o superior	Muy bueno	Bueno o superior
Bueno o superior	Bueno	Bueno o superior
Bueno o superior	Moderado	Moderado
Moderado		Moderado
Deficiente	Indistinto	Deficiente
Malo		Malo

2.2. ESTADO QUÍMICO

El <u>estado químico</u> es "*no bueno*" cuando hay algún incumplimiento de la Norma de Calidad Ambiental, bien sea como media anual (NCA_MA), como máximo admisible (NCA_CMA) o en la biota (NCA_biota) para las **sustancias prioritarias y otros contaminantes**. Las NCA se recogen en el *Anexo IV del RD 817/2015*.

Tabla A17. Clases de estado químico para sustancias prioritarias y otros contaminantes.

Clase de estado químico	Bueno	No alcanza el buen estado
Sustancias prioritarias y otros contaminantes	Cumple NCA	No cumple NCA
Valoración de cada clase	2	3

2.3. ESTADO

El <u>estado</u> de la masa de agua es el *peor valor* entre su potencial ecológico y su estado químico.

Tabla A18. Determinación del estado.

Estado	Estado Químico					
Potencial Ecológico	Bueno	No alcanza el buen estado				
Bueno o superior	Bueno					
Moderado		Inferior a bueno				
Deficiente	Inferior a bueno					
Malo						

DIAGNÓSTICO DEL ESTADO TRÓFICO DEL EMBALSE DE MANSILLA

Se han considerado los indicadores especificados en la tabla A19 para los valores medidos en el embalse, estableciéndose el estado trófico global del embalse según la metodología descrita.

Tabla A19. Parámetros indicadores y rangos de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración P (μg P /L)	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cél./ml)	<100	100-1000	1000-10000	10000-100000	>100000
VALOR PROMEDIO	< 1,8	1,8 – 2,6	2,6 - 3,4	3,4 - 4,2	> 4,2

En la tabla A20a se incluye el estado trófico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según la valoración de este estado trófico final para la campaña de muestreo de 2004.

Tabla A20a. Diagnóstico del estado trófico del embalse de Mansilla 2004.

INDICADOR	VALOR	ESTADO TRÓFICO
CONCENTRACIÓN P TOTAL	18,00	Mesotrófico
DISCO SECCHI	3,00	Mesotrófico
CLOROFILA a	6,70	Mesotrófico
DENSIDAD ALGAL	1515	Mesotrófico
ESTADO TRÓFICO FINAL	3,00	MESOTRÓFICO

Atendiendo a los criterios seleccionados, la concentración de P total ha clasificado el embalse como mesotrófico; la transparencia como mesotrófico; la concentración de clorofila *a* como mesotrófico y la densidad algal como mesotrófico. Combinando todos los indicadores, el estado trófico final para el embalse de Mansilla en 2004 ha resultado ser **MESOTRÓFICO**.

En la tabla A20b se incluye el estado trófico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según la valoración de este estado trófico final para la campaña de muestreo de 2005.

Tabla A20b. Diagnóstico del estado trófico del embalse de Mansilla 2005.

INDICADOR	VALOR	ESTADO TRÓFICO
CONCENTRACIÓN P TOTAL	33,00	Mesotrófico
DISCO SECCHI	5,95	Oligotrófico
CLOROFILA a	2,80	Mesotrófico
DENSIDAD ALGAL	293	Oligotrófico
ESTADO TRÓFICO FINAL	2,50	OLIGOTRÓFICO

Atendiendo a los criterios seleccionados, la concentración de P total ha clasificado el embalse como mesotrófico; la transparencia como oligotrófico; la concentración de clorofila *a* como mesotrófico y la densidad algal como oligotrófico. Combinando todos los indicadores, el estado trófico final para el embalse de Mansilla en 2005 ha resultado ser **OLIGOTRÓFICO**.

DIAGNÓSTICO DEL ESTADO FINAL DEL EMBALSE DE MANSILLA

En la mayoría de los casos en lugar del estado de la masa, sólo se puede establecer el potencial ecológico (además sin tener en cuenta la presencia de sustancias preferentes y contaminantes específicos de cuenca, para los indicadores fisicoquímicos). Tampoco se han estudiado las sustancias prioritarias y otros contaminantes que permitan determinar el estado químico, por eso se diagnostica la masa con el **potencial ecológico**.

Se han considerado los indicadores, los valores de referencia y los límites de clase B+/M (Bueno o superior/Moderado), M/D (Moderado/Deficiente) y D/M (Deficiente/Malo), así como sus ratios de calidad ecológica (RCE), especificados en las tablas A21 y A22.

Tabla A21. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo.

			RANGOS DEL RCE				
Indicador	Elementos	Parámetros	Bueno o superior		Moderado	Deficiente	Malo
		Clorofila <i>a</i> (μg/L)	≥ 0,433		0,432 – 0,287	0,286 - 0,143	< 0,143
Biológico	Fitoplancton	Biovolumen algal (mm³/L)	≥ 0,362		0,361 – 0,24	0,23 - 0,12	< 0,12
		Índice de Catalán (IGA)	≥ 0,	982	0,981 – 0,655	0,654 – 0,327	< 0,327
		Porcentaje de cianobacterias	≥ 0,	715 0,714 – 0,48		0,47 – 0,24	< 0,24
			Bueno o superior		Moderado	Deficiente	Malo
IND	INDICADOR BIOLÓGICO			> 0,6		0,2 - 0,4	< 0,2
			RANGOS DE VALORES				
Indicador	Elementos	Parámetros	Muy bueno	Bueno	Moderado	Deficiente	Malo
	Transparencia	Disco de Secchi (m)	> 6	3 - 6	1,5 - 3	0,7 - 1,5	< 0,7
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	> 8	8 - 6	6 - 4	4 - 2	< 2
	Nutrientes	Concentración de PT (µg P/L)	0 - 4	0 - 4 4 - 10 10 - 35		35 - 100	> 100
			Muy bueno	Bueno		Moderado	
INDIC	INDICADOR FISICOQUÍMICO			1,6 - 2,4	> 2,4		

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico normativo sigue el esquema de decisiones indicado en la tabla A22.

Tabla A22. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico (PE)
Bueno o superior	Muy bueno	Bueno o superior
Bueno o superior	Bueno	Bueno o superior
Bueno o superior	Moderado	Moderado
Moderado		Moderado
Deficiente	Indistinto	Deficiente
Malo		Malo

En la tabla A23a se incluye el potencial indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según el potencial ecológico, tras pasar el filtro del indicador fisicoquímico para el año 2004.

Tabla A23a. Diagnóstico del potencial ecológico del embalse de Mansilla 2004.

Indicador	Elementos	Parámetro	Indicador	Valor	RCE	RCET	PE
Biológico	Fitoplanctor	Biomasa	Clorofila a (μg/L)	6,70	0,39	0,54	Bueno o superior
INDICADOR BIOLÓGICO					2	BUENO O SUPERIOR	
Indica	ador	Elementos	Indicador		Valor		PE
		Transparencia	Disco de Secchi (m)	3,00		Moderado	
Fisicoquími	со	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	8,73		Muy Bueno	
		Nutrientes	Concentración de PT (µg P/L)	18,00		Moderado	
INDICADOR FISICOQUÍMICO				3			MODERADO
POTENCIAL ECOLÓGICO				MODERADO			
ESTADO FINAL				INFERIOR A BUENO			BUENO

De acuerdo con los resultados obtenidos, el Estado Final del embalse de Mansilla para el año 2004 es de nivel 3, **INFERIOR A BUENO**.

En la tabla A23b se incluye el potencial indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según el potencial ecológico, tras pasar el filtro del indicador fisicoquímico para el año 2005.

Tabla A23b. Diagnóstico del potencial ecológico del embalse de Mansilla 2005.

Indicador	Elementos	Parámetro	Indicador	Valor	RCE	RCET	PE
Biológico	Fitoplanctor	Biomasa	Clorofila a (µg/L)	2,80	0,93	0,95	Bueno o superior
INDICADOR BIOLÓGICO					2	BUENO O SUPERIOR	
Indica	ador	Elementos	Indicador		Valor		PE
		Transparencia	Disco de Secchi (m)	5,95		Bueno	
Fisicoquímico		Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	9,31		Muy Bueno	
		Nutrientes	Concentración de PT (µg P/L)			Moderado	
INDICADOR FISICOQUÍMICO					3	MODERADO	
POTENCIAL ECOLÓGICO				MODERADO			
ESTADO FINAL					INFE	RIOR A E	BUENO

De acuerdo con los resultados obtenidos, el Estado Final del embalse de Mansilla para el año 2005 es de nivel 3, **INFERIOR A BUENO**.