

EJECUCIÓN DE TRABAJOS RELACIONADOS CON LOS REQUISITOS DE LA DIRECTIVA MARCO (2000/60/CE) EN EL ÁMBITO DE LA CONFEDERACIÓN HIDROGRÁFICA DEL EBRO REFERIDOS A: ELABORACIÓN DEL REGISTRO DE ZONAS PROTEGIDAS, DETERMINACIÓN DEL POTENCIAL ECOLÓGICO DE LOS EMBALSES, DESARROLLO DE PROGRAMAS ESPECÍFICOS DE INVESTIGACIÓN

EMBALSE DE OLIANA

ÍNDICE

	Página
1. INTRODUCCIÓN	1
2. DESCRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE	1
2.1. Ámbito geográfico	1
2.2. Características morfométricas e hidrológicas	2
2.3. Usos del agua	4
2.4. Registro de zonas protegidas	4
3. DESCRIPCIÓN DE LOS TRABAJOS REALIZADOS	5
4. DIAGNÓSTICO DE LA SITUACIÓN ACTUAL	7
4.1. Características físico-químicas de las aguas	7
4.2. Hidroquímica del embalse	9
4.3. Productores primarios y concentración de pigmentos fotosintetizadores	11
4.3.1. Cualidad bioindicadora	14
5. DIAGNÓSTICO DEL GRADO TRÓFICO	14
6. DEFINICIÓN DEL POTENCIAL ECOLÓGICO	15
ANEXO I. RESULTADOS FÍSICO QUÍMICOS	
ANEXO II. RESULTADOS QUÍMICOS	
ANEXO III. RESULTADOS BIOLÓGICOS	
REPORTAJE FOTOGRÁFICO	
APÉNDICE 1. FICHA DESCRIPTIVA DEL EMBALSE	

1. INTRODUCCIÓN

El presente documento recoge los resultados de los trabajos realizados en el embalse de Oliana y la interpretación de los mismos, con una disposición temática similar para los 47 embalses estudiados, a efectos de proporcionar una referencia fija que facilite la consulta y explotación de la información contenida en ellos.

En general, se recurre a presentaciones gráficas y sintéticas de la información, acompañadas de un texto conciso, lo que permitirá una ágil y rápida consulta del documento. Los listados de datos analíticos se adjuntan en tres anexos que completan el presente documento. Por último, tras los anexos, se expone un reportaje fotográfico que refleja el estado del embalse durante el periodo estudiado (años 2004-2005).

En apartados sucesivos se comentan los siguientes aspectos:

- Resultados del estudio en el embalse (FASE DE CARACTERIZACIÓN) de todos los aspectos tratados (hidráulicos, físico-químicos y biológicos), que culminan en el diagnóstico del grado trófico.
- Definición del "Potencial Ecológico", tras la aplicación de indicadores biológicos y físico-químicos propuestos en la Directiva Marco de Aguas.

2. DESCRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE

2.1. Ámbito geográfico

El embalse de Oliana se sitúa en la Sierras Interiores de la Cadena Pirenaica. Adosadas al Pirineo Axial, las Sierras Interiores configuran una estrecha franja de rocas del Triásico, Cretácico superior, Paleoceno y Eoceno. Su estructura consiste de manera simplificada en pliegues y cabalgamientos de dirección WNW-ESE.

El embalse, cuya presa fue terminada en 1959, se sitúa en la localidad de Oliana, en la provincia de Lérida. Regula principalmente las aguas del río Segre, aunque también las

de otros ríos y arroyos de menor entidad, entre los que destacan los ríos Sellent y Perlés.

2.2. Características morfométricas e hidrológicas

Se trata de un embalse de moderadas dimensiones, alargado y sin grandes heterogeneidades en el eje longitudinal.

La cuenca vertiente al embalse de Oliana tiene una superficie total de 267 963,67 ha, de las cuales 24 382 ha corresponden a la cuenca vertiente del río Segre.

El embalse tiene una extensión de 443 ha en su máximo nivel normal, una capacidad total de 101 hm³ y 78,38 hm³ de capacidad útil. Tiene una profundidad media de 22,8 m, mientras que la profundidad máxima es de 72,7 m. En el cuadro I se presentan las características morfométricas del embalse y de las subcuencas.

Cuadro I: Características morfométricas del embalse y subcuencas

Superficie de la cuenca total (ha)	267 963,67
Superficie de la cuenca parcial (ha)	267 963,67
Superficie de la subcuenca de escorrentía (ha)	24 382
Superficie del embalse (ha)	443
Longitud máxima del embalse (km)	13,0
Capacidad total (hm³)	101
Capacidad útil (hm³)	78,38
Profundidad máxima (m)	72,7
Profundidad media (m)	22,8
Perímetro en máximo nivel (km)	33
Cota máximo nivel embalsado (msnm)	518,3
Cota(s) de la toma(s) de agua principal(es) (msnm)	453,6; 475,6; 495,6

Se trata de un embalse monomíctico¹, típico de zonas templadas. La termoclina en el periodo estival se sitúa a 13 de profundidad, mientras que la capa fótica ronda los 4 metros de espesor.

En el **cuadro II** se presentan las medias mensuales de la explotación hidráulica correspondiente al periodo 2001-2005.

Cuadro II: Parámetros hidráulicos mensuales. Periodo 2001-2005

	В	ALANCE HIDRÁULIC	O MENSUAL		
Periodo	Volumen	Salidas totales	Entradas Totales	Ts	Te
2001-2005	Hm³	Hm³	Hm³	años	años
Octubre	48,19	23,00	31,70	0,18	0,13
Noviembre	58,54	45,63	51,38	0,11	0,09
Diciembre	56,53	61,78	55,38	0,08	0,09
Enero	56,04	30,83	34,35	0,15	0,14
Febrero	57,25	31,53	31,93	0,14	0,14
Marzo	61,38	52,88	60,90	0,10	0,09
Abril	71,74	70,85	85,70	0,08	0,07
Mayo	85,89	155,25	158,43	0,05	0,05
Junio	91,11	102,48	109,85	0,07	0,07
Julio	84,45	50,93	34,65	0,14	0,21
Agosto	58,34	47,88	18,15	0,10	0,27
Septiembre	45,81	33,65	29,58	0,11	0,13
Total anual	64,60	706,65	701,98	0,09	0,09

El tiempo de residencia interanual del agua es bajo, 1 mes considerando tanto las entradas como las salidas. El mínimo se obtiene en el mes mayo (0,6 meses), tanto para las entradas como para las salidas, y el máximo en agosto (3,3 meses), según las entradas.

-

Significa que presenta un único ciclo anual de mezcla-estratificación vertical.

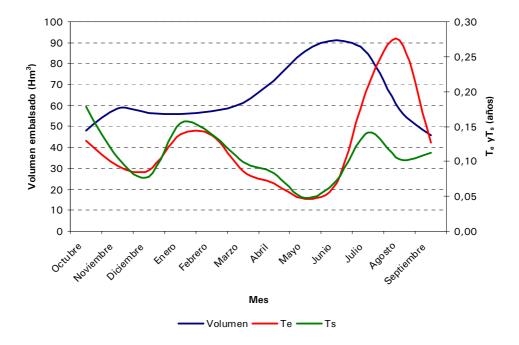


Figura 1: Volumen embalsado y tiempo de retención del agua

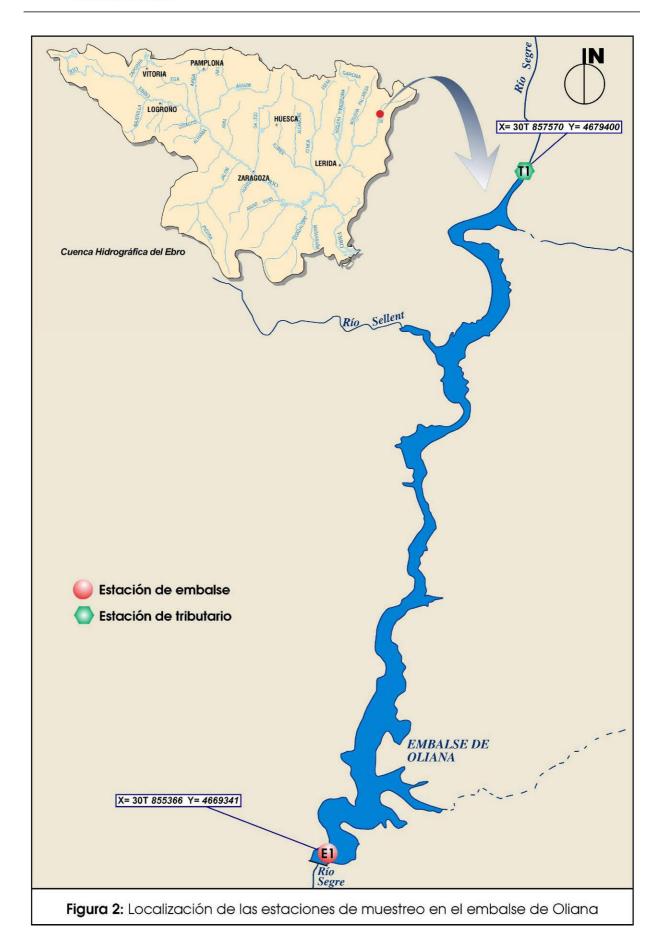
2.3. Usos del agua

Las aguas del embalse se destinan principalmente al riego, a través del Canal Principal de Urgell, y al aprovechamiento hidroeléctrico. También se utiliza con fines recreativos (baño, navegación y pesca), aunque las escarpadas riberas que presenta el embalse limitan estos usos.

2.4. Registro de zonas protegidas

El embalse de Oliana forma parte del Registro de Zonas Protegidas elaborado por la Confederación Hidrográfica del Ebro, en contestación al artículo 6 de la Directiva Marco del Agua, dentro de la categoría *Zonas sensibles bajo el marco de la directiva 91/271/CEE*. El embalse se encuadra en la lista de 12 embalses declarados como Zonas Sensibles, a través de la Resolución 25 de mayo de 1998 de la Secretaria de Estado de Aguas y Costas.

3. DESCRIPCIÓN DE LOS TRABAJOS REALIZADOS

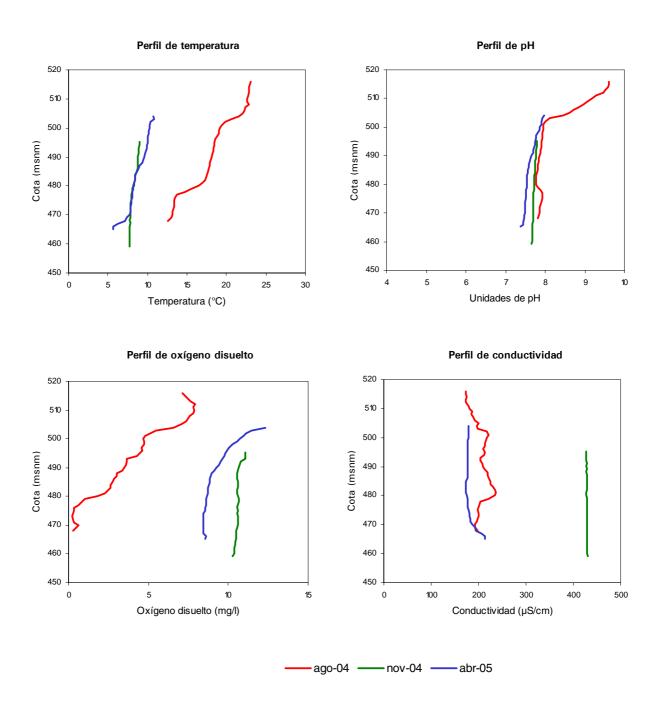

Para acometer la caracterización del embalse se ha ubicado una estación en las inmediaciones de la presa (E1) y otra en el tributario principal (T1), en el cruce de la carretera L-401 con el río Segre (ver Figura 2). Una descripción detallada de los trabajos realizados en el marco del Estudio se presenta en el apartado 4.1. de la MEMORIA DEL ESTUDIO.

En total se han realizado 4 campañas de muestreo en el embalse, distribuidas a lo largo de los años 2004 y 2005. En el **cuadro III** se presentan las fechas de los muestreos y si en esa fecha hay estratificación térmica en el embalse.

Cuadro III: Campañas y fechas de muestreo

1ª Campaña	03/08/2004	Estratificación
2ª Campaña	20/11/2004	Mezcla
3ª Campaña	19/04/2005	Mezcla
4ª Campaña	27/07/2005	-

4. DIAGNÓSTICO DE LA SITUACIÓN ACTUAL


4.1. Características físico-químicas de las aguas

Los resultados físico-químicos de cada una de las campañas de muestreo se presentan en el **Anexo I**. Del comportamiento observado se desprenden las siguientes apreciaciones:

- La temperatura del agua es moderada, oscilando entre los 5,62 °C -mínimo- y los 23,09 °C, -máximo registrado en el estío-. En el periodo estival se detectan dos gradientes térmicos, el primero se sitúa a 13 m de profundidad, mientras que el segundo, más profundo a 37 m.
- El pH del agua es ligeramente básico, con un valor medio anual de 7,88 ud. El máximo epilimnético estival es de 9,62 ud y el mínimo, registrado en las capas más profundas, de 7,38 ud.
- La transparencia del agua es baja, con un registro medio anual en la lectura de disco de Secchi de 2,4 m, lo que supone una profundidad de la capa fótica en torno a 4 metros. El mínimo (2,1 m) se registra en la campaña de primavera, mientras que el máximo (3,0 m) se registra en invierno.
- En la época de mezcla (primavera-invierno) las condiciones de oxigenación de la columna de agua son buenas, alcanzando durante éste periodo una concentración media de 9,9 mg/l O₂. Situación que empeora ostensiblemente en el estío donde, a partir del metro 23 de profundidad, la columna presenta condiciones hipóxicas (<4 mg/l O₂), llegando a la anoxia (<1 mg/l O₂) en los últimos 11 metros de profundidad, coincidiendo con el gradiente térmico localizado a 37 m.
- La conductividad de las aguas es moderada, situándose la media anual en 262
 μS/cm. Los resultados obtenidos se encuentran dentro de los valores históricos de
 este ámbito.

Figura 3: Perfiles físico-químicos del embalse

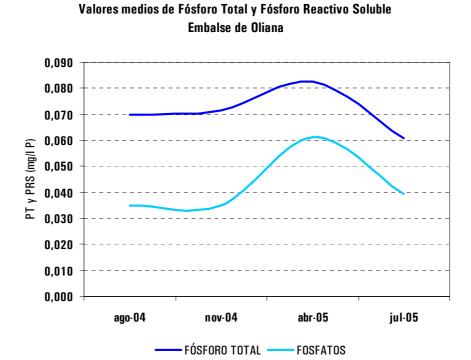
4.2. Hidroquímica del embalse

De los resultados analíticos obtenidos a lo largo del periodo 2004-2005, y que se presentan en el **Anexo II**, se desprenden las siguientes conclusiones:

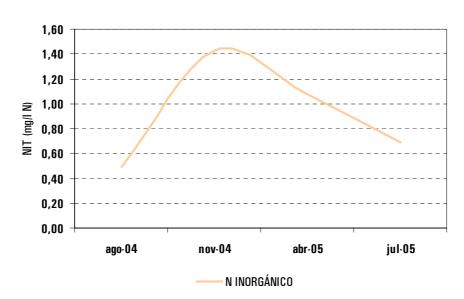
 Las concentraciones de nutrientes son altas y se encuentran dentro de los rangos conocidos para el embalse.

La concentración media de fósforo total para el periodo estudiado, y toda la columna de agua, adquiere un valor de 0,071 mg/l P. Los resultados obtenidos oscilan entre 0,061 mg/l P, mínimo registrado en verano de 2005, y 0,083 máximo primaveral. Por su parte, los ortofosfatos presentan su valor mínimo en verano e invierno de 2004 -0,035 mg/l P- y el máximo -0,061 mg/l P- también en primavera.

De los compuestos nitrogenados destacan las concentraciones de nitritos que, en todas la muestras analizadas, superan el umbral establecido para vida piscícola de tipo ciprinícolas (≤0,03 mg NO₂/I). La concentración media del nitrógeno inorgánico total (NIT) alcanza un valor de 0,92 mg/l N. Entre las formas inorgánicas la dominante es la de nitratos (NO₃/NIT=70%), siendo la proporción de amonio moderada (NH₄/NIT=27%) y la de nitritos pequeña (NO₂/NIT= 3%). El valor máximo de NIT se localiza en invierno -1,43 mg/l N- mientras que el mínimo -0,49 mg/l N- se sitúa en verano de 2004. Al igual que en el caso del fósforo, se aprecia un ligero descenso de las concentraciones en el estío, lo que pone de manifiesto un elevado consumo algal.


Las concentraciones de nutrientes aportada por el río Segre (T1) son altas, obteniéndose unas valores medios anuales de 0,129 mg/l P y 1,54 mg/l N, para el fósforo y el nitrógeno inorgánico total, respectivamente.

 El contenido de materia orgánica obtenido, tanto en el embalse como en el tributario, es bajo y no presenta variaciones interanuales destacables. Los valores medios obtenidos en el embalse han sido de 2,2 y 11,6 mg O₂/I, para la DBO₅ y DQO, respectivamente.



 Las aguas embalsadas son moderadamente mineralizadas y la concentración de calcio obtenida (33,1 mg Ca/l) se sitúa en el rango habitual en el embalse.

Figura 4: Evolución temporal de la concentración de nutrientes

Valores medios de Nitrógeno Inorgánico Total Embalse de Oliana

4.3. Productores primarios y concentración de pigmentos fotosintetizadores

Los resultados de los análisis cuantitativos de fitoplancton se presentan en el **Anexo III**. De los resultados obtenidos se desprenden las siguientes apreciaciones:

De la totalidad de 4 análisis realizados, se han identificado un total de 54 especies, distribuidas entre los siguientes grupos taxonómicos:

- 16 diatomeas
- 5 cianobacterias
- 22 clorofíceas
- 6 criptofíceas
- 2 dinofíceas
- 3 zigofíceas

El siguiente gráfico recoge los cambios estacionales -climatológicos- de las comunidades fitoplanctónicas del embalse a lo largo del año hidrológico estudiado -2004-2005-. Las 5 especies representadas en el gráfico son consideradas las más representativas de este sistema léntico, atendiendo a la densidad algal -cel/ml- que se ha obtenido en una determinada estación climatológica.

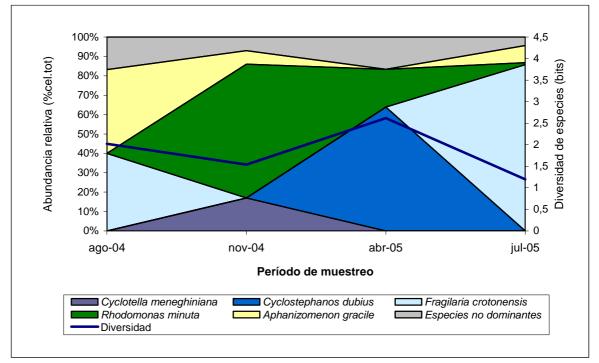


Figura 5: Evolución temporal de las especies dominantes y diversidad de la comunidad algal

La composición y estructura poblacional han mantenido las siguientes pautas temporales:

En el verano de 2004, se registran valores muy elevados de densidad fitoplanctónica - 19 081 cel/ml-. Se identifican dos especies con una abundancia semejante, la diatomea *Fragilaria crotonensis* y la cianobacteria *Aphanizomenon gracile*. Las poblaciones de las especies citadas suponen el 79% de la densidad total. Tanto la diatomea como la cianobacteria suelen crecer en el periodo de estratificación en medios con alta carga de nutrientes.

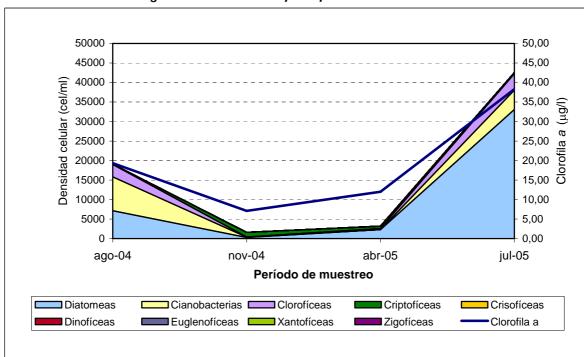
En invierno se produce una fuerte reducción de la densidad algal hasta registrarse el mínimo valor en el periodo de estudio –1 585 cel/ml-. En relación a la composición, todos los grupos algales han decrecido excepto las criptofíceas. Específicamente *Rhodomonas minuta* crece hasta establecerse como especie dominante representando un 69% de la comunidad algal.

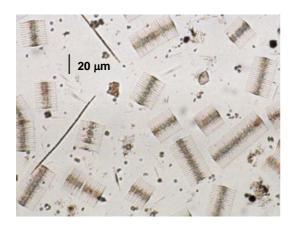
Durante la primavera se registra un crecimiento moderado hasta contabilizarse 3 208 cel/ml. Cualitativamente se observa el aumento de las poblaciones de diatomeas gracias

al crecimiento de la especie *Cyclostephanos dubius*, identificada como dominante. La abundancia de la criptofícea *Rhodomonas minuta* disminuye y pasa a ser la principal especie acompañante. El elevado número de especies identificadas en relación a otros periodos y la suave dominancia de *Cyclostephanos dubius*, determina el registro del máximo valor del índice de diversidad de Shannon-Weaber -2,62 bits-.

La época estival de 2005 se caracteriza por un intenso crecimiento y se registra el máximo valor de densidad algal -42 530 cel/ml-. La composición de la comunidad fitoplanctónica es muy semejante a la del estío del año anterior, la especie dominante es la diatomea *Fragilaria crotonensis* –representa el 78% de la densidad celular total- y tiene como principales especies acompañantes la cianobacteria *Aphanizomenon gracile* y la clorofícea *Sphaerocystis schroeteri*. La abundancia de *Fragilaria crotonensis* reduce el valor de diversidad de Shannon Weaber al mínimo del periodo de estudio -1,20 bits-.

La evolución temporal de la densidad algal, segregada por clases taxonómicas y la biomasa expresada en concentración de clorofila a, se representan en el siguiente gráfico:




Figura 6: Evolución temporal por clases taxonómicas

La evolución temporal de la biomasa medida como concentración de clorofila *a* presenta una buena correspondencia con la densidad fitoplanctónica. La tendencia de ambos parámetros es la misma a lo largo del periodo de estudio y el registro de los mínimos valores -7,10 μg/l de clorofila *a*; 1 585 cel/ml- y de los máximos -38,3 μg/l de clorofila *a*; 42 530 cel/ml- coinciden en los mismos periodos de tiempo.

4.3.1. Cualidad bioindicadora

Los elevados valores de densidad algal media -10 248 cel/ml-, de biomasa media -18,63 μ g/l de clorofila a- y la sucesión de especies a lo largo del año de estudio indican que el embalse de Oliana es un medio eutrófico. Las asociaciones algales identificadas en el embalse se describen a continuación:

Fragilaria crotonensis

Durante las épocas estivales destaca la dominancia de la diatomea *Fragilaria crotonensis* con elevados valores de densidad relativa. Esta diatomea puede crecer en medios con diversos grados tróficos, desde ambientes oligotróficos hasta eutróficos. De forma que las especies que la acompañan completan la información bioindicadora. En ambos periodos estivales, la segunda especie más abundante es

la cianobacteria *Aphanizomenon gracile*. Esta especie es indicadora de medios eutróficos y suele crecer en medios estratificados y con una concentración de nutrientes nitrogenados reducida. En invierno de 2004 y primavera de 2005 la comunidad fitoplanctónica tiene valores de densidad moderados y las especies más representativas son características de medios mesotróficos: *Rhodomonas minuta* en invierno y *Cyclostephanos dubius* en primavera.

5. DIAGNÓSTICO DEL GRADO TRÓFICO

En función de la variedad de índices que se plasma en el cuadro IV, se puede catalogar al embalse de Oliana, como eutrófico.

.

Atendiendo a criterios de la OCDE, todos los indicadores sitúan al embalse en rangos eutróficos, a excepción de la transparencia que, considerando su mínimo anual, lo cataloga como mesotrófico.

Cabe citar que los resultados obtenidos según el índice TSI (Carlson,1974), estimados a partir del la clorofila *a* y de la profundidad del disco de Secchi, definen al embalse como mesotrófico. No obstante, según el fósforo total, se trata de un embalse eutrófico.

Cuadro IV Catalogación del grado trófico del embalse según los diferentes índices

Indice	Definición criterio	Rango	Perio	Periodo 2.004-2.005		
			Valor	Grado Trófico		
EPA (1976)	PT (ug/l); media anual	<10-MESO-20>	71	<i>EUTRÓFICO</i>		
EPA (Weber, 1976)	N° células algales/ml	< 2000-MESO-15000 >	16.601	<i>EUTRÓFICO</i>		
EPA (Weber, 1976)	Clorofila (ug/l); máx. fót.	< 3-MESO-20 >	38,3	<i>EUTRÓFICO</i>		
Lee, Jones & Rast (1978)	Clorofila (ug/l);media anual	< 2,1-3-6,7-10>	19,2	<i>EUTRÓFICO</i>		
Lee, Jones & Rast (1978)	PT (ug/l); media anual	<8-12-28-40>	71	<i>EUTRÓFICO</i>		
Lee, Jones & Rast (1978)	SDT (m); media anual	< 1,8- 2,4 - 3,8 -4,6 >	2,4	MESOTRÓFICO		
Margalef (1983)	N° células algales/ml	5000 (lím. eut.avanmod.)	16.601	E. AVANZADA		
Margalef (1983)	Clorofila (ug/l); anual fót.	5 (lím. eut.avanmod.)	19,2	E. AVANZADA		
Margalef (1983)	PT (ug/l); media anual	15 (lím. eut.avanmod.)	71	E. AVANZADA		
Margalef (1983)	NO₃-N (ug/l); media anual	140 (lím. eut.avanmod.)	642	E. AVANZADA		
Margalef (1983)	SDT (m); media anual	3 (lím. eut.avanmod.)	2,4	E. AVANZADA		
OCDE (1980)	Clorofila (ug/l); anual fót.	<1; < 2.5; 2.5·8; 8·25; > 25	19,2	<i>EUTRÓFICO</i>		
OCDE (1980)	Clorofila (ug/l); máx. anual	< 2.5; < 8;8-25;25-75; > 75	38,3	<i>EUTRÓFICO</i>		
OCDE (1980)	PT (ug/l); media anual	Uol. < 4-10-35-100 > Heu.	71	<i>EUTRÓFICO</i>		
OCDE (1980)	SDT (m); media anual	> 12; > 6;;6-3;3-1.5; < 1.5	2,4	<i>EUTRÓFICO</i>		
OCDE (1980)	SDT (m); mínimo anual	>6;>3;3-1.5;1.5-0.7;<0.7	2,1	MESOTRÓFICO		
TSI (Carlson, 1974): DST	TSI=10(6-log2(DST))	Uol. < 20-40-60-80 > Heu.	47	MESOTRÓFICO		
TSI (Carlson, 1974): CLA	10(6-log2 7,7(1/Cla^0,68))	Uol. < 20-40-60-80 > Heu.	60	MESOTRÓFICO		
TSI (Carlson, 1974): PT	TSI = 10(6-log2(54,9/PT))	Uol. < 20-40-60-80 > Heu.	64	<i>EUTRÓFICO</i>		

6. DEFINICIÓN DEL POTENCIAL ECOLÓGICO

En el apartado 6.1. de la MEMORIA DEL ESTUDIO - **ESTABLECIMIENTO DEL POTENCIAL ECOLÓGICO**- se describe la metodología empleada para clasificar el potencial ecológico.

Tal y como se refleja en el cuadro siguiente, el potencial ecológico del embalse de Oliana es **DEFICIENTE**.

EMBALSE DE O	MBALSE DE OLIANA			CLASES DEL POTENCIAL ECOLÓGICO								
Indicadores	Elementos	Parámetros	Óptimo	Bueno	Moderado	Deficiente	Malo	Valor obs.	Valoración del parámetro	Valoración del indicador	IPE	EQR
Biológicos	, , , , , , , , , , , , , , , , , , , ,	Densidad algal, media anual (cel/ml)	< 5000	5000-15000	15000-25000	25000-50000	>50000	10.248	4			
bio		Biomasa algal, Cla a (µg/l); anual capa fótica	0-1	1-2,5	2,5-8	8,0-25	> 25	19,2	2	2,0		
		Cianofíceas tóxicas; máx anual (cel/ml)	0-500	500-2000	2000-20000	20000-100000	> 10 ⁵	7.765	3			
Físico-Químicos	Transparencia	Disco de Secchi; media anual (m)	>12	12-6	6-3	3-1,5	< 1,5	1,4	1		2,0	0,50
	Condiciones de oxigenación	Concentración hipolimnética media anual (mg/l O ₂)	>8	8-6	6-4	4-2	<2	7,6	4	2,3		
	Concentración de nutrientes	Concentración de PT: media anual (µg/l P)	0-4	4-10	10-35	35-100	> 100	45,5	2			
				VALORACIÓN DE CADA CLASE								
			5	4	3	2	1					

	C	CLASES DEL POTENCIAL ECOLÓGICO								
	Óptimo	Bueno	Moderado	Deficiente	Malo					
EQR	1-0,95	0,95-0,80	0,80-0,60	0,60-0,40	0,40-0					

ANEXO I. RESULTADOS FÍSICO QUÍMICOS

 EMBALSE:
 OLIANA (OL)
 CAMPAÑA:
 1

 COT. MAX:
 518,3
 NIVEL:
 516

 Estación:
 E1
 Profundidad:
 48

 Fecha:
 03/08/2004
 Hora:
 11:20

 Disco Secchi (m):
 2,2
 Capa fótica (m):
 3,7

Prof.	Cota	Temp	pН	OD	OD	Cond.	Redox	T.D.S.
<u> </u>	msnm	°C	unid	mg/l	% sat.	μS/cm	mV	mg/l
0	516	23,09	9,60	7,12	82,80	173	263	111
1	515	22,97	9,62	7,31	84,90	173	266	111
2	514	22,90	9,58	7,46	86,40	175	267	111
3	513	22,89	9,52	7,67	88,60	174	266	111
4	512	22,81	9,47	7,90	90,30	174	266	112
5	511	22,72	9,29	7,82	90,20	179	260	113
6	510	22,63	9,19	7,86	90,10	180	259	115
7	509	22,57	9,05	7,79	89,90	187	255	120
8	508	22,84	8,97	7,56	86,60	184	252	117
9	507	22,36	8,86	7,48	85,90	188	250	121
10	506	22,23	8,72	7,36	83,70	192	246	123
11	505	22,06	8,62	7,07	80,30	200	243	128
12	504	21,58	8,46	6,54	70,20	197	237	125
13	503	20,63	8,11	5,48	60,80	199	223	128
14	502	19,85	8,00	5,15	55,50	217	223	139
15	501	19,33	7,96	4,80	51,80	222	221	142
16	500	19,20	7,95	4,70	51,80	218	220	141
17	499	19,06	7,95	4,74	52,60	215	220	136
18	498	18,99	7,93	4,75	51,20	214	220	136
19	497	18,77	7,93	4,55	48,60	213	220	137
20	496	18,61	7,93	4,60	49,60	209	220	133
21	495	18,49	7,90	4,47	46,90	213	218	133
22	494	18,43	7,90	4,27	45,90	211	218	135
23	493	18,36	7,90	3,63	39,50	203	218	130
24	492	18,31	7,89	3,67	38,60	203	218	132
25	491	18,20	7,89	3,61	37,10	207	218	132
26	490	18,10	7,87	3,48	35,80	210	217	134
27	489	18,03	7,85	3,37	34,50	214	216	138
28	488	17,93	7,83	3,02	31,80	220	216	141
29	487	17,88	7,82	3,02	32,10	220	216	140
30	486	17,75	7,81	2,87	29,30	222	215	142
31	485	17,66	7,81	2,73	28,50	225	215	144
32	484	17,52	7,80	2,64	27,30	225	214	144
33	483	17,37	7,78	2,61	26,80	230	214	148
34	482	17,26	7,77	2,47	25,30	234	214	150
35	481	17,00	7,77	2,28	22,90	236	215	151
36	480	16,53	7,76	1,84	17,80	234	214	149
37	479	15,51	7,82	1,04	9,60	221	218	141
38	478	14,75	7,88	0,82	7,30	204	221	132
39	477	13,77	7,93	0,63	4,70	201	224	129
40	476 475	13,49	7,94	0,37	3,70	200	225	128
41	475 474	13,37	7,93	0,33	3,10	199	225	127
42	474	13,34	7,91	0,27	2,40	200	224	128

Continuación

EMBALSE COT. MA		OLIANA 518,3	(OL)		CAMPAÑ NIVEL:	IA:	1 516	
Estación: Fecha: Disco Secchi (m):			E1 03/08/2004 2,2		Profundio Hora: Capa fóti		48 11:20 3,7	
Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S.
m. n	nsnm	°C	unid	mg/l	% sat.	μS/cm	mV	mg/l
43	473	13,36	7,89	0,22	2,30	200	222	128
44	472	13,26	7,86	0,26	3,20	198	218	127
45	471	13,21	7,86	0,37	3,40	197	218	126
46	470	13,16	7,86	0,62	6,20	193	218	123
47	469	13,09	7,84	0,48	5,30	193	217	124
48	468	12,62	7,82	0,27	2,20	198	212	126

TRI	BUTA	RIO:	Segre		CAMPAÑ	A:	1_		
	ación: :ha:		OLT1 03/08/2004		Cod. Est. Hora:	:	OL1T1 13:00		
-	Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S.
	m.	msnm	°C	unid	mg/l	% sat.	μ S/cm	mV	mg/l
	1	-	18,29	9,19	7,12	71,10	336	253	216

EMBAL COT. N		OLIANA 518,3	(OL)		CAMPAÑ NIVEL:	IA:	2 495	
Estació		310,0	E1		Profundic	lad.	36	-
Fecha:			20/11/2004		Hora:	iaa.	16:30	
	ecchi (n	n)·	3		Capa fóti	ca (m)·	5,1	
Prof.			pH	OD	OD	Cond.		T.D.S.
m.	Cota msnm	Temp °C	unid	mg/l	% sat.	μS/cm	mV	mg/l
0	495	9,02	7,80	11,05	95,80	427	186	278
1	494	9,02	7,80	11,03	95,60	427	186	278
2	493	8,92	7,79	11,04	95,40	427	186	278
3	492	8,85	7,77	10,77	93,00	427	185	278
4	491	8,83	7,76	10,70	92,30	428	185	278
5	490	8,82	7,76	10,66	92,00	427	185	278
6	489	8,82	7,76	10,61	91,50	428	185	278
7	488	8,81	7,75	10,57	91,20	427	185	278
8	487	8,80	7,75	10,56	91,00	428	185	278
9	486	8,79	7,75	10,55	91,00	428	185	278
10	485	8,64	7,74	10,58	90,80	428	185	278
11	484	8,55	7,74	10,60	90,70	428	185	278
12	483	8,43	7,73	10,62	90,70	428	185	278
13	482	8,39	7,73	10,57	90,30	428	185	278
14	481	8,35	7,72	10,57	90,10	427	185	278
15	480	8,30	7,72	10,58	90,00	427	185	278
16	479	8,13	7,73	10,64	90,20	428	186	278
17	478	8,03	7,72	10,64	90,20	429	185	279
18	477	7,99	7,71	10,59	89,50	429	185	279
19	476	7,95	7,70	10,57	89,20	429	185	279
20	475	7,91	7,71	10,59	89,30	429	185	279
21	474	7,88	7,71	10,57	89,10	429	186	279
22	473	7,86	7,71	10,58	89,10	429	186	279
23	472	7,85	7,70	10,59	89,20	429	185	279
24	471	7,83	7,70	10,60	89,20	429	185	279
25	470	7,82	7,70	10,58	89,00	428	186	278
26	469	7,82	7,70	10,55	88,70	428	186	278
27	468	7,78	7,69	10,52	88,40	428	185	278
28	467	7,79	7,69	10,49	88,20	429	185	279
29	466	7,78	7,68	10,47	88,00	429	185	279
30	465	7,77	7,68	10,47	88,00	428	185	278
31	464	7,77	7,68	10,45	87,90	429	185	279
32	463	7,76	7,67	10,42	87,60	428	184	278
33	462	7,75	7,67	10,40	87,40	428	185	278
34	461	7,74	7,67	10,39	87,30	428	185	278
35	460	7,75	7,67	10,36	87,10	428	185	278
36	459	7,78	7,65	10,26	86,60	430	184	280

TRIBUTA	RIO:	Segre		CAMPAÍ	ÑA:	2		
Estación:		OLT1		Cod. Est	.:	OL2T1		
Fecha:		20/11/2004		Hora:		17:35		
Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S.
m.	msnm	°C	unid	mg/l	% sat.	μ S/cm	mV	mg/l
1	-	7,35	8,07	13,73	114,10	382	189	248

38

39

466

465

5,64

5,62

EMBALSE: OLIANA (OL) CAMPAÑA: 3 COT. MAX: 518,3 **NIVEL:** 504 Estación: Ε1 Profundidad: 38,8 Fecha: 19/04/2005 12:00 Hora: Disco Secchi (m): Capa fótica (m): 2,1 3,6 OD OD Cond. Redox T.D.S. Prof. Cota Temp pН ٥C m. msnm unid mg/l % sat. μS/cm mV mg/l 179 -0 504 10,78 7,98 12,31 111,10 116 178 -1 503 10,90 7,93 11,44 102,40 116 2 502 10,37 7,91 11,14 99,60 178 -116 3 501 10,32 7,90 10,95 98,10 178 -116 4 500 10,29 7,87 10,72 95,70 178 -116 5 499 7,86 10,15 10,56 94,40 177 -115 115 6 498 10,12 7,81 10,27 91,60 177 -7 497 10,07 7,78 10,06 89,50 177 -115 8 496 10,02 7,76 9,94 88,10 177 -115 9 495 7,75 9,99 9,81 86,90 177 -115 10 494 7.74 9,97 9.77 86,50 177 -115 493 9,88 7,73 9,62 85,10 177 -11 115 12 492 9,77 7,71 9,54 84,10 176 -114 7,69 82,90 13 491 9,74 9,40 177 -115 14 490 9,57 7,66 9,25 81,40 177 -115 7,64 15 489 9,48 9,10 79,70 176 -114 16 488 9,29 7,62 8,98 78,30 176 -114 17 487 9,03 7,59 8,89 77,00 176 -114 18 486 8,84 7,58 8,85 76,50 176 -114 19 485 8,64 7,57 8,82 75,70 174 -113 20 484 7,56 8,79 75,20 8,48 174 -113 21 483 7,55 74,70 174 -8,43 8,75 113 22 482 8,38 7,55 8,72 74,40 174 -113 23 7.54 481 8,29 8,73 74,40 174 -113 24 480 8,17 7,53 8,67 73,60 175 -114 25 479 8,15 7,53 8,63 73,20 176 -114 26 478 8,13 7,52 8,60 72,90 176 -114 27 477 8,07 7,52 8,59 72,70 177 -115 28 476 8,04 7,52 8,57 72,50 177 -115 29 475 7,52 72,20 178 -8,00 8,54 116 30 474 7,93 7,50 8,46 71,40 180 -117 31 473 7,87 7,50 8,45 71,20 181 -118 32 472 7,85 7,49 8,44 71,00 182 -118 33 471 7,85 7,49 8,42 70,90 182 -118 34 70,60 470 7,72 7,49 8,42 186 -121 35 469 7,48 8,43 70,20 192 -125 7,43 36 468 7,18 7,47 8,43 69,80 195 -127 37 467 6,28 7,45 8,42 68,70 206 -134

7,44

7,38

8,59

8,53

68,40

68,00

213 -

213 -

138

138

TRIBUTA	RIO:	Segre		CAMPAÑA	۷:	3		
Estación: Fecha:		OLT1 19/04/2005		Cod. Est.: Hora:		OL3T1 11:00		
Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S.
m.	msnm	°C	unid	mg/l	% sat.	μS/cm	mV	mg/l
1	-	8,58	7,62	10,60	90,90	168	56	109

ANEXO II. RESULTADOS QUÍMICOS

EMBALSE:	OLIANA			CÓDIGO:	OL1
CAMPAÑA:	1			FECHA:	03/08/2004
COTA MÁXIMA:	518			NIVEL:	516
		CÓDI	GO DEL P	PUNTO DE MU	IESTREO
PARÁMETRO	UNIDAD	E1S	E1T	E1F	T1
PROFUNDIDAD	m	1	13	47	
COTA	msnm	515	503	469	
SÓLIDOS EN SUSPENSIÓN	mg/l	4,8	8,1	3,6	18,1
ALCALINIDAD TOTAL	mg CO₃Ca/I	57,1	113,2	65,7	115,3
DBO ₅	mg O ₂ /I	1,3	3,5	1,1	1,9
DQO	mg O ₂ /I	7,9	23,8	23,8	7,9
FÓSFORO TOTAL	mg P/I	0,106	0,095	0,008	0,155
FOSFATOS	mg PO ₄ ³/l	0,016	0,290	0,014	0,310
FOSFATOS	mg P/I	0,005	0,095	0,005	0,101
NITRÓGENO KJELDAHL	mg N/I	0,90	1,20	0,59	0,92
AMONIO TOTAL	mg NH ₄ /I	0,03	0,83	0,15	0,12
AMONIO TOTAL	mg N/I	0,02	0,65	0,12	0,09
NITRÓGENO ORGÁNICO	mg N/I	0,87	0,55	0,47	0,83
NITRATOS	mg NO₃/I	0,39	1,33	0,97	4,90
NITRATOS	mg N/I	0,09	0,30	0,22	1,11
NITRITOS	mg NO ₂ /I	0,050	0,143	0,060	0,029
NITRITOS	mg N/I	0,015	0,044	0,018	0,009
N INORGÁNICO	mg N/I	0,12	0,99	0,35	1,20
CALCIO	mg Ca/l	25,6	45,9	27,9	
MAGNESIO DISUELTO	mg Mg/l	3,4	4,9	3,4	
SODIO	mg Na/l	4,2	5,9	4,2	
POTASIO	mg K/I	1,0	1,4	1,1	
CLORUROS	mg Cl⁻/l	5,5	8,9	5,0	
SULFATOS	mg SO ₄ -2/l	13,7	20,6	14,2	
SULFUROS	mg S ⁻² /I			0,002	
SÍLICE	mg SiO ₂ /I	0,70	9,82	0,00	
CLOROFILA a	μ g/l	19,3			

EMBALSE:	OLIANA			CÓDIGO:	OL2
CAMPAÑA:	2			FECHA:	20/11/2004
COTA MÁXIMA:	2 518			NIVEL:	495
COTA INIAXINIA.	516	CÓDI	CO DEL		
					MUESTREO
PARÁMETRO	UNIDAD	E1S	E1M	E1F	<i>T1</i>
PROFUNDIDAD	m	1	18	35	
COTA	msnm	494	477	460	
SÓLIDOS EN SUSPENSIÓN	mg/l	3,3			8,7
ALCALINIDAD TOTAL	mg CO₃Ca/l	116,6			102,6
DBO ₅	mg O ₂ /I	1,0			1,8
DQO	mg O ₂ /I	4,0			12,0
FÓSFORO TOTAL	mg P/I	0,029	0,064	0,122	0,108
FOSFATOS	mg PO ₄ 3/I	0,070	0,137	0,113	0,266
FOSFATOS	mg P/I	0,023	0,045	0,037	0,087
NITRÓGENO KJELDAHL	mg N/I	1,19	1,09	1,15	0,44
AMONIO TOTAL	mg NH ₄ /I	0,55	0,49	0,49	0,13
AMONIO TOTAL	mg N/I	0,43	0,38	0,38	0,10
NITRÓGENO ORGÁNICO	mg N/I	0,76	0,71	0,77	0,35
NITRATOS	mg NO ₃ /I	4,48	4,46	4,29	4,05
NITRATOS	mg N/I	1,01	1,01	0,97	0,92
NITRITOS	mg NO ₂ /I	0,120	0,107	0,105	0,086
NITRITOS	mg N/I	0,037	0,033	0,032	0,026
N INORGÁNICO	mg N/I	1,48	1,42	1,38	1,04
CLOROFILA a	μg/l	7,1			

EMBALSE:	OLIANA			CÓDIGO:	OL3
CAMPAÑA:	3			FECHA:	19/04/2005
COTA MÁXIMA:	518			NIVEL:	504
		CÓDI	GO DEL	PUNTO DE	MUESTREO
PARÁMETRO	UNIDAD	E1S	E1M	E1F	T1
PROFUNDIDAD	m	1	19	38	
COTA	msnm	503	485	466	
SÓLIDOS EN SUSPENSIÓN	mg/l	4,4			18,8
ALCALINIDAD TOTAL	mg CO₃Ca/l	71,3			71,3
DBO ₅	mg O ₂ /I	4,3			2,0
DQO	mg O ₂ /I	20,0			28,0
FÓSFORO TOTAL	mg P/I	0,069	0,085	0,094	0,099
FOSFATOS	mg PO ₄ 3/I	0,104	0,209	0,250	0,223
FOSFATOS	mg P/I	0,034	0,068	0,082	0,073
NITRÓGENO KJELDAHL	mg N/I	0,74	1,20	1,33	0,77
AMONIO TOTAL	mg NH ₄ /I	0,08	0,30	0,45	0,16
AMONIO TOTAL	mg N/I	0,06	0,23	0,35	0,12
NITRÓGENO ORGÁNICO	mg N/I	0,68	0,97	0,98	0,64
NITRATOS	mg NO₃/I	3,71	3,65	3,68	2,68
NITRATOS	mg N/I	0,84	0,82	0,83	0,60
NITRITOS	mg NO ₂ /I	0,122	0,106	0,093	0,080
NITRITOS	mg N/I	0,037	0,032	0,028	0,024
N INORGÁNICO	mg N/I	0,93	1,09	1,21	0,75
CLOROFILA a	μg/l	12,0			

EMBALSE:	OLIANA			CÓDIGO:	OL4
CAMPAÑA:	4			FECHA:	26/07/2005
COTA MÁXIMA:	518			NIVEL:	510
		CÓDIO	GO DEL PUN	TO DE MUE	STREO
<i>PARÁMETRO</i>	UNIDAD	E1S	E1M	E1F	T1
PROFUNDIDAD	m	1	-	-	
COTA	msnm	509			
SÓLIDOS EN SUSPENSIÓN	mg/l	6,9			11,0
DBO ₅	mg O ₂ /I	1,7			0,7
DQO	mg O ₂ /I	4,0			8,1
FÓSFORO TOTAL	mg P/I	0,032	0,054	0,096	0,153
FOSFATOS	mg PO ₄ ³/I	0,021	0,104	0,238	0,323
FOSFATOS	mg P/I	0,007	0,034	0,078	0,105
NITRÓGENO KJELDAHL	mg N/I	0,74	0,46	0,35	2,34
AMONIO TOTAL	mg NH ₄ /I	0,34	0,03	0,11	3,00
AMONIO TOTAL	mg N/I	0,26	0,03	0,08	2,33
NITRÓGENO ORGÁNICO	mg N/I	0,48	0,43	0,27	0,01
NITRATOS	mg NO₃/I	0,26	3,32	3,57	3,42
NITRATOS	mg N/I	0,06	0,75	0,81	0,77
NITRITOS	mg NO ₂ /I	0,063	0,032	0,126	0,210
NITRITOS	mg N/I	0,019	0,010	0,038	0,064
N INORGÁNICO	mg N/I	0,34	0,79	0,93	3,17
SULFUROS	mg S ⁻² /I			0,000	
CLOROFILA a	μ g/l	38,3			

ANEXO III. RESULTADOS BIOLÓGICOS

EMBALSE:	OLIANA	CÓDIGO:	OL1
CAMPAÑA:	1	FECHA:	03/08/2004
COTAMAX:	518	D. SECCHI:	2,2
NIVEL:	516	C.FÓTICA:	3,7
PARÁMETRO	UNIDAD	CÓDIGO DEL PUNTO D	
		E1S	
PROFUNDIDAD	m	1	
COTA	msnm	515	
CLOROFILA a	μ g/l	19,30	
Población total	n°cel/ml	19.081	
Diversidad (H)	Bits	2,02	
Clase BACILLARIOFICEA	n°cel/ml	7.167	
Grupo CIANOBACTERIA	n°cel/ml	8.666	
Clase CLOROFICEA	n°cel/ml	3.166	
Clase CRIPTOFICEA	n°cel/ml	76	
Clase CRISOFICEA	n°cel/ml	0	
Clase DINOFICEA	n°cel/ml	3	
Clase EUGLENOFICEA	n°cel/ml	0	
Clase XANTOFICEA	n°cel/ml	0	
Clase ZIGOFICEA	n°cel/ml	3	
ESPECIES	TAXÓN	n° cel/ml	
Asterionella formosa	Bacillariofícea	1	
Fragilaria crotonensis	Bacillariofícea	7.158	
Fragilaria ulna	Bacillariofícea	8	
Anabaena sp.	Cianobacteria	4	
Aphanizomenon gracile	Cianobacteria	7.761	
Chroococcus planctonicus	Cianobacteria	23	
Synechocystis aquatilis	Cianobacteria	878	
Ankistrodesmus sp.	Clorofícea	2	
Coelastrum microporum	Clorofícea	1.813	
Chlamydomonas sp.	Clorofícea	1	
Oocystis lacustris	Clorofícea	16	
Oocystis sp.	Clorofícea	246	
Pediastrum duplex	Clorofícea	159	
Scenedesmus quadricauda	Clorofícea	45	
Sphaerocystis schroeteri	Clorofícea	884	
Cryptomonas erosa	Criptofícea	2	
Rhodomonas minuta	Criptofícea	74	
Gymnodinium sp.	Dinofícea	3	
Cosmarium sp.	Zigofícea	1	
Staurastrum sp.	Zigofícea	2	

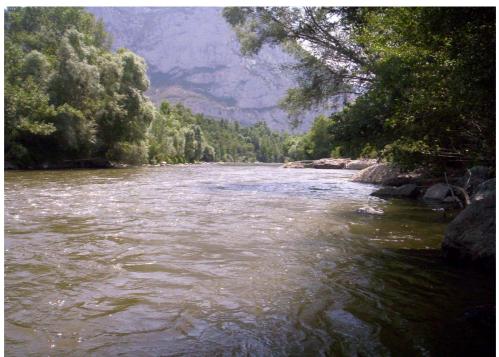
EMBALSE:	OLIANA	CÓDIGO:	OL2
CAMPAÑA:	2	FECHA:	20/11/2004
COTAMAX:	518	D. SECCHI:	3,0
NIVEL:	495	C.FÓTICA:	5,1
PARÁMETRO	UNIDAD	CÓDIGO DEL PUNTO	DE MUESTREO
		E1S	
PROFUNDIDAD	m	1	
COTA	msnm	494	
CLOROFILA a	μ g/l	7,10	
Población total	n°cel/ml	1.585	
Diversidad (H)	Bits	1,54	
Clase BACILLARIOFICEA	n°cel/ml	272	
Grupo CIANOBACTERIA	n°cel/ml	110	
Clase CLOROFICEA	n°cel/ml	44	
Clase CRIPTOFICEA	n°cel/ml	1.158	
Clase CRISOFICEA	n°cel/ml	0	
Clase DINOFICEA	n°cel/ml	1	
Clase EUGLENOFICEA	n°cel/ml	0	
Clase XANTOFICEA	n°cel/ml	0	
Clase ZIGOFICEA	n°cel/ml	0	
ESPECIES	TAXÓN	n° cel/n	nl
Cyclotella meneghiniana	Bacillariofícea	269	
Fragilaria crotonensis	Bacillariofícea	1	
Navicula sp.	Bacillariofícea	1	
Nitzschia palea	Bacillariofícea	1	
Anabaena sp.	Cianobacteria	1	
Aphanizomenon gracile	Cianobacteria	109	
Actinastrum sp.	Clorofícea	1	
Ankistrodesmus convolutus	Clorofícea	1	
Coelastrum microporum	Clorofícea	23	
Crucigenia quadrata	Clorofícea	2	
Chlamydomonas sp.	Clorofícea	1	
Oocystis sp.	Clorofícea	8	
Scenedesmus quadricauda	Clorofícea	2	
Sphaerocystis schroeteri	Clorofícea	5	
Tetraedron minimum	Clorofícea	1	
Cryptomonas erosa	Criptofícea	23	
Cryptomonas marssonii	Criptofícea	5	
Cryptomonas ovata	Criptofícea	20	
Cryptomonas sp.	Criptofícea	9	
Rhodomonas minuta	Criptofícea	1.101	
Gymnodinium sp.	Dinofícea	1	

EMBALSE:	OLIANA	CÓDIGO: OL3	
CAMPAÑA:	3	FECHA: 19/04/2005	
COTAMAX:	5 518		
NIVEL:	504	D. SECCHI: 2,1 C.FÓTICA: 3,6	
PARÁMETRO	UNIDAD	CÓDIGO DEL PUNTO DE MUESTREC	
PARAMETRO	UNIDAD	E1S	,
PROFUNDIDAD	m	1	
COTA	msnm	503	
CLOROFILA a	μ g/l	12,00	
Población total	n° cel/ml	3.208	
Diversidad (H)	Bits	2,62	
Clase BACILLARIOFICEA	n°cel/ml	2.288	
Grupo CIANOBACTERIA	n°cel/ml	1	
Clase CLOROFICEA	n°cel/ml	313	
Clase CRIPTOFICEA	n°cel/ml	581	
Clase CRISOFICEA	n°cel/ml	0	
Clase DINOFICEA	n°cel/ml	25	
Clase EUGLENOFICEA	n°cel/ml	0	
Clase XANTOFICEA	n°cel/ml	0	
Clase ZIGOFICEA	n°cel/ml	0	
ESPECIES	TAXÓN	n° cel/ml	
Asterionella formosa	Bacillariofícea	28	
Aulacoseira granulata	Bacillariofícea	1	
Aulacoseira italica	Bacillariofícea	1	
Cyclostephanos dubius	Bacillariofícea	1.486	
Cyclotella ocellata	Bacillariofícea	212	
Diatoma vulgaris	Bacillariofícea	1	
Fragilaria arcus	Bacillariofícea	1	
Fragilaria ulna	Bacillariofícea	24	
Navicula sp.	Bacillariofícea	10	
Nitzschia acicularis	Bacillariofícea	507	
Nitzschia sp.	Bacillariofícea	17	
Anabaena sp.	Cianobacteria	1	
Carteria sp.	Clorofícea	17	
Coelastrum microporum	Clorofícea	83	
Chlamydomonas sp.	Clorofícea	1	
Chlorococcum sp.	Clorofícea	139	
Elakatothrix gelatinosa	Clorofícea	1	
Kirchneriella sp.	Clorofícea	10	
Monoraphidium sp.	Clorofícea	1	
Pediastrum boryanum	Clorofícea	7	
Scenedesmus acuminatus	Clorofícea	1	
Scenedesmus quadricauda	Clorofícea	25	
Sphaerocystis schroeteri	Clorofícea	28	
Cryptomonas erosa	Criptofícea	31	
Cryptomonas marssonii	Criptofícea	1	
Cryptomonas ovata	Criptofícea	7	
Cryptomonas reflexa	Criptofícea	1	
Cryptomonas sp.	Criptofícea	76	
Rhodomonas minuta	Criptofícea	465	
Gymnodinium sp.	Dinofícea	25	

EMBALSE: CAMPAÑA: COTAMAX:	OLIANA 4 518	CÓDIGO: OL4 FECHA: 07/2005 D. SECCHI: -
NIVEL:		C.FÓTICA:
PARÁMETRO	UNIDAD	CÓDIGO DEL PUNTO DE MUESTREO
PROFUNDIDAD	m	E1S 1
COTA	msnm	'
CLOROFILA a		38,30
Población total	μg/l n°cel/ml	42.530
Diversidad (H)	Bits	
		1,20
Clase BACILLARIOFICEA	n°cel/ml	33.058
Grupo CIANOBACTERIA	n°cel/ml	4.988
Clase CLOROFICEA	n°cel/ml	4.205
Clase CRIPTOFICEA	n°cel/ml	265
Clase CRISOFICEA	n°cel/ml	0
Clase DINOFICEA	n°cel/ml	2
Clase EUGLENOFICEA	n°cel/ml	0
Clase XANTOFICEA	n°cel/ml	0
Clase ZIGOFICEA	n°cel/ml	12
ESPECIES	TAXÓN	n° cel/ml
Anomoneis sphaerophora	Bacillariofícea	1
Asterionella formosa	Bacillariofícea	56
Aulacoseira granulata	Bacillariofícea	9
Cyclotella sp.	Bacillariofícea	2
Fragilaria crotonensis	Bacillariofícea	32.990
Anabaena flos-aquae	Cianobacteria	1.452
Aphanizomenon gracile	Cianobacteria	3.536
Ankyra sp.	Clorofícea	3
Coelastrum microporum	Clorofícea	56
Chlamydomonas sp.	Clorofícea	10
Chlorococcum sp.	Clorofícea	8
Nephrocytium sp.	Clorofícea	76
Oocystis lacustris	Clorofícea	63
Pediastrum boryanum	Clorofícea	1
Pediastrum duplex	Clorofícea	56
-	Clorofícea	
Scenedesmus quadricauda Scenedesmus tenuispina	Cloroficea	6
•	Cloroficea	
Sphaerocystis schroeteri Tetraedron minimum		3.917
	Clorofícea	3
Cryptomonas ovata	Criptofícea	8
Rhodomonas minuta	Criptofícea	257
Ceratium hirundinella	Dinofícea	1
Gymnodinium sp.	Dinofícea	1
Cosmarium formosulum	Zigofícea	1
Cosmarium sp.	Zigofícea	10
Staurastrum sp.	Zigofícea	1

REPORTAJE FOTOGRÁFICO

Vista de la presa desde la estación de muestreo (E1). Verano de 2004 (03/08/2004)



Vista de la presa desde la estación de muestreo (E1). Verano de 2005 (07/2005)

Vista panorámica del embalse de Oliana desde la estación de muestreo (E1). Invierno de 2004 (20/11/2004)

Río Segre, tributario principal del embalse de Oliana. Verano de 2004 (03/08/2004)

APÉNDICE 1: FICHA DESCRIPTIVA DEL EMBALSE

Datos generales de embalse

Fecha actualización: Junio 2006

EMBALSE: OLIANA CÓDIGO: OL

LOCALIZACIÓN:

Autonomía: Cataluña Provincia: Lérida Municipio: Oliana

Situación en C.H.Ebro

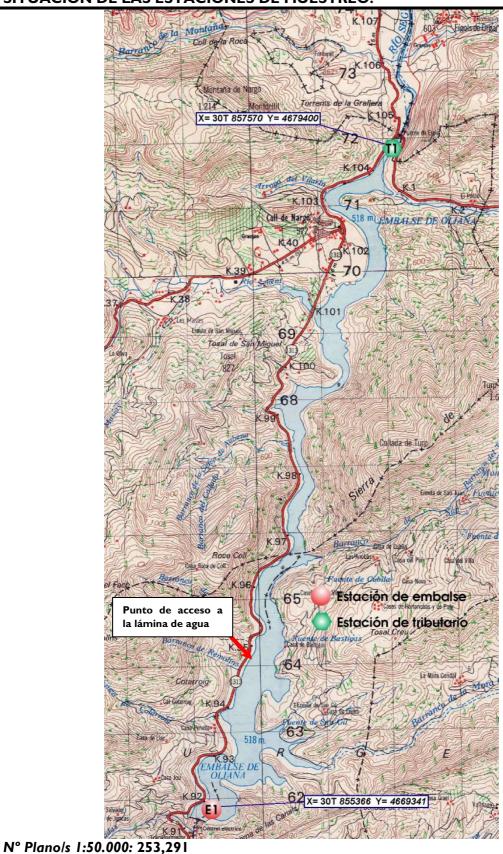
CARACTERÍSTICAS GENERALES DEL EMBALSE:

Tributario principal: Río Segre Otros tributarios: Ríos Sellent y

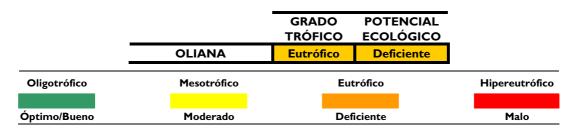
Perlés

Año de terminación: 1959 Propietario: Estado Cuenca a la que pertenece: Segre Altitud (msnm): 518,3 Capacidad útil (hm³): 78,38 Capacidad total (hm³): 101 Longitud máxima (km): 13 Perímetro (km): 33 Profundidad máxima (m): 72,7 Profundidad media (m): 22,8

> Usos principales: Riego, Otros usos: Recreativo


> > Hidroeléctrico

Panorámica del embalse (03/08/2004)


SITUACIÓN DE LAS ESTACIONES DE MUESTREO:

Embalse de Oliana. 2 de 4

DIAGNÓSTICO DE LA CALIDAD

CARACTERÍSTICAS FÍSICO-QUÍMICAS: (Datos referidos a la estación de presa -EI-)

I ^a CAMPAÑA	Muest	treador:	David García	Fecha de muestreo: 03/08/200
T ^a superficie (°C	C): 23,09		pH superficie (ud): 9,60	Conductividad superficie (µS/cm): 173
T ^a fondo (°C	C): 12,62		pH fondo (ud): 7,82	Conductividad fondo (µS/cm): 198
Ta TI (°C	C):		pH TI (ud):	Conductividad T1 (µS/cm):
			Transparencia	
Dis	sco de Sec	cchi (m)	Capa fótica (m) -D	.S. x 1,7-
EI	2,2		3,7	
Terr	moclina:	Si	Profundio	dad (m): 13
Condiciones a	nóxicas:	Si	Grosor capa anóx	ica (m):
2ª CAMPAÑA	Muest	treador	David García	Fecha de muestreo: 20/11/200
T ^a superficie (°C		ci cadoi.	pH superficie (ud): 7,80	Conductividad superficie (µS/cm): 427
T ^a fondo (°C	, ,		pH fondo (ud): 7,65	Conductividad fondo (µS/cm): 430
T° TI (°C			pH T1 (ud):	Conductividad TI (µS/cm):
	-).		Transparencia	Conductividad 11 (po/em).
Die	sco de Sec	cchi (m)	Capa fótica (m) -D	S v l 7-
EI	3	ceiii (iii)	5, l	
	moclina:	No	Profundio	lad (m): -
Condiciones a		No	Grosor capa anóx	
Condiciones a	illoxicas.	140	Grosor capa arrox	ica (111)
3° CAMPAÑA	Muest	treador:	David García	Fecha de muestreo: 19/04/200
T ^a superficie (°C	C): 10,78	treador:	pH superficie (ud): 7,98	Conductividad superficie (µS/cm): 179
T ^a superficie (°C T ^a fondo (°C	C): 10,78 C): 5,62	treador:		
T ^a superficie (°C	C): 10,78 C): 5,62	treador:	pH superficie (ud): 7,98	Conductividad superficie (µS/cm): 179
T ^a superficie (°C T ^a fondo (°C	C): 10,78 C): 5,62	treador:	pH superficie (ud): 7,98 pH fondo (ud): 7,38	Conductividad superficie (μS/cm): 179 Conductividad fondo (μS/cm): 213
T ^a superficie (°C T ^a fondo (°C T ^a T I (°C	C): 10,78 C): 5,62		pH superficie (ud): 7,98 pH fondo (ud): 7,38 pH TI (ud):	Conductividad superficie (μS/cm): 179 Conductividad fondo (μS/cm): 213 Conductividad T1 (μS/cm):
T ^a superficie (°C T ^a fondo (°C T ^a T I (°C	C): 10,78 C): 5,62 C):		pH superficie (ud): 7,98 pH fondo (ud): 7,38 pH TI (ud): Transparencia	Conductividad superficie (μS/cm): 179 Conductividad fondo (μS/cm): 213 Conductividad T1 (μS/cm):
T ^a superficie (°C T ^a fondo (°C T ^a T I (°C Dis	C): 10,78 C): 5,62 C):		pH superficie (ud): 7,98 pH fondo (ud): 7,38 pH TI (ud): Transparencia Capa fótica (m) -D	Conductividad superficie (µS/cm): 179 Conductividad fondo (µS/cm): 213 Conductividad TI (µS/cm): .S. x 1,7-
T ^a superficie (°C T ^a fondo (°C T ^a T I (°C Dis	C): 10,78 C): 5,62 C): sco de Sec 2,1 moclina:	cchi (m) No	pH superficie (ud): 7,98 pH fondo (ud): 7,38 pH TI (ud): Transparencia Capa fótica (m) -D 3,6	Conductividad superficie (µS/cm): 179 Conductividad fondo (µS/cm): 213 Conductividad TI (µS/cm): S. x I,7- dad (m): -
Ta superficie (°C Ta fondo (°C Ta TI (°C Dis EI Terr Condiciones a	C): 10,78 C): 5,62 C): sco de Sec 2,1 moclina: nóxicas:	No No	pH superficie (ud): 7,98 pH fondo (ud): 7,38 pH TI (ud): Transparencia Capa fótica (m) -D 3,6 Profundio Grosor capa anóx	Conductividad superficie (µS/cm): 179 Conductividad fondo (µS/cm): 213 Conductividad TI (µS/cm): S. x I,7- dad (m): - ica (m): -
Ta superficie (°C Ta fondo (°C Ta TI (°C Dis EI Terr Condiciones a	C): 10,78 C): 5,62 C): sco de Sec 2,1 moclina: nóxicas:	No No	pH superficie (ud): 7,98 pH fondo (ud): 7,38 pH TI (ud): Transparencia Capa fótica (m) -D 3,6 Profundio Grosor capa anóx David García	Conductividad superficie (µS/cm): 179 Conductividad fondo (µS/cm): 213 Conductividad TI (µS/cm): S. x I,7- dad (m): - dica (m): - Fecha de muestreo: 26/07/200
Ta superficie (°C Ta fondo (°C Ta TI (°C Dis EI Terr Condiciones a 4a CAMPAÑA Ta superficie (°C	C): 10,78 C): 5,62 C): sco de Sec 2,1 moclina: nóxicas: Muest C): -	No No	pH superficie (ud): 7,98 pH fondo (ud): 7,38 pH TI (ud): Transparencia Capa fótica (m) -D 3,6 Profundio Grosor capa anóx David García pH superficie (ud): -	Conductividad superficie (µS/cm): 179 Conductividad fondo (µS/cm): 213 Conductividad TI (µS/cm): S. x I,7- dad (m): - ica (m): - Fecha de muestreo: 26/07/200 Conductividad superficie (µS/cm): -
Ta superficie (°C Ta fondo (°C Ta TI (°C Dis EI Terr Condiciones a 4a CAMPAÑA Ta superficie (°C Ta fondo (°C)	C): 10,78 C): 5,62 C): sco de Sec	No No	pH superficie (ud): 7,98 pH fondo (ud): 7,38 pH TI (ud): Transparencia Capa fótica (m) -D 3,6 Profundio Grosor capa anóx David García pH superficie (ud): - pH fondo (ud): -	Conductividad superficie (µS/cm): 179 Conductividad fondo (µS/cm): 213 Conductividad TI (µS/cm): S. x I,7- dad (m): - ica (m): - Fecha de muestreo: 26/07/200 Conductividad superficie (µS/cm): - Conductividad fondo (µS/cm): -
Ta superficie (°C Ta fondo (°C Ta TI (°C Dis EI Terr Condiciones a 4a CAMPAÑA Ta superficie (°C	C): 10,78 C): 5,62 C): sco de Sec	No No	pH superficie (ud): 7,98 pH fondo (ud): 7,38 pH TI (ud): Transparencia Capa fótica (m) -D 3,6 Profundio Grosor capa anóx David García pH superficie (ud): - pH fondo (ud): -	Conductividad superficie (µS/cm): 179 Conductividad fondo (µS/cm): 213 Conductividad TI (µS/cm): S. x I,7- dad (m): - ica (m): - Fecha de muestreo: 26/07/200 Conductividad superficie (µS/cm): -
Ta superficie (°C Ta fondo (°C Ta TI (°C Dis EI Terr Condiciones a 4a CAMPAÑA Ta superficie (°C Ta fondo (°C Ta TI (°C)	C): 10,78 C): 5,62 C): sco de Sec	No No No treador:	pH superficie (ud): 7,98 pH fondo (ud): 7,38 pH TI (ud): Transparencia Capa fótica (m) -D 3,6 Profundio Grosor capa anóx David García pH superficie (ud): - pH fondo (ud): - pH TI (ud): - Transparencia	Conductividad superficie (µS/cm): 179 Conductividad fondo (µS/cm): 213 Conductividad TI (µS/cm): S. x I,7- dad (m): - ica (m): - Fecha de muestreo: 26/07/200 Conductividad superficie (µS/cm): - Conductividad fondo (µS/cm): - Conductividad TI (µS/cm): -
Ta superficie (°C Ta fondo (°C Ta TI (°C Dis EI Terr Condiciones a 4a CAMPAÑA Ta superficie (°C Ta fondo (°C Ta TI (°C)	C): 10,78 C): 5,62 C): sco de Sec	No No No treador:	pH superficie (ud): 7,98 pH fondo (ud): 7,38 pH TI (ud): Transparencia Capa fótica (m) -D 3,6 Profundio Grosor capa anóx David García pH superficie (ud): - pH fondo (ud): -	Conductividad superficie (µS/cm): 179 Conductividad fondo (µS/cm): 213 Conductividad TI (µS/cm): S. x I,7- dad (m): - ica (m): - Fecha de muestreo: 26/07/200 Conductividad superficie (µS/cm): - Conductividad fondo (µS/cm): - Conductividad TI (µS/cm): -
Ta superficie (°C Ta fondo (°C Ta TI (°C Dis EI Terr Condiciones a 4a CAMPAÑA Ta superficie (°C Ta fondo (°C Ta TI (°C Dis EI	C): 10,78 C): 5,62 C): sco de Sec	No No No treador:	pH superficie (ud): 7,98 pH fondo (ud): 7,38 pH TI (ud): Transparencia Capa fótica (m) -D 3,6 Profundio Grosor capa anóx David García pH superficie (ud): - pH fondo (ud): - pH TI (ud): - Transparencia	Conductividad superficie (µS/cm): 179 Conductividad fondo (µS/cm): 213 Conductividad TI (µS/cm): S. x I,7- dad (m): - ica (m): - Fecha de muestreo: 26/07/200 Conductividad superficie (µS/cm): - Conductividad fondo (µS/cm): - Conductividad TI (µS/cm): -
Ta superficie (°C Ta fondo (°C Ta TI (°C Dis EI Terr Condiciones a 4a CAMPAÑA Ta superficie (°C Ta fondo (°C Ta TI (°C Dis EI	C): 10,78 C): 5,62 C): sco de Sec 2,1 moclina: nóxicas: Muest C): - C): - C): - moclina:	No No No treador:	pH superficie (ud): 7,98 pH fondo (ud): 7,38 pH TI (ud): Transparencia Capa fótica (m) -D 3,6 Profundio Grosor capa anóx David García pH superficie (ud): - pH fondo (ud): - pH TI (ud): - Transparencia Capa fótica (m) -D -	Conductividad superficie (µS/cm): 179 Conductividad fondo (µS/cm): 213 Conductividad TI (µS/cm): S. x I,7- dad (m): - Fecha de muestreo: 26/07/200 Conductividad superficie (µS/cm): - Conductividad fondo (µS/cm): - Conductividad TI (µS/cm): - S. x I,7- dad (m): -

CARACTERÍSTICAS QUÍMICAS Y BIOLÓGICAS: (Datos referidos a la estación de presa -E1-)

Iª CAMPAÑA		Fed	ha de muest	reo: 03/08	3/2004
			DIGO DEL P		
PARÁMETRO	UNIDAD	OLEIS	OLEIT	OLEIF	OLTI
PROFUNDIDAD	m	I	13	47	
ÓSFORO TOTAL	mg P/I	0,106	0,095	0,008	0,155
OSFATOS	mg P/I	0,005	0,095	0,005	0,101
NITRÓGENO KJELDAHL	mg N/I	0,90	1,20	0,59	0,92
AMONIO TOTAL	mg N/I	0,02	0,65	0,12	0,09
NITRATOS	mg N/I	0,09	0,30	0,22	1,11
NITRITOS	mg N/I	0,015	0,044	0,018	0,009
CLOROFILA a	μg/l	19,3			<u> </u>
N° DE CÉLULAS TOTALES	n° cel/ml	19.081			
CLASE PREDOMINANTE:	Cianobacter		N° celula	s/ml: 8.666	
ESPECIE PREDOMINANTE:	Aphanizomer	on gracile	N° celula	ıs/ml: 7.761	
2ª CAMPAÑA		Fec	ha de muest	reo: 20/11	/2004
PARÁMETRO	UNIDAD	OLEIS	OLEIM	OLEIF	OLTI
PROFUNDIDAD	m	I	18	35	
-ÓSFORO TOTAL	mg P/I	0,029	0,064	0,122	0,108
FOSFATOS	mg P/I	0,023	0,045	0,037	0,087
NITRÓGENO KJELDAHL	mg N/I	1,19	1,09	1,15	0,44
AMONIO TOTAL	_	0,43	0,38	0,38	0,10
NITRATOS	mg N/I	1,01	1,01	0,97	0,92
	mg N /I	0,037	0,033	0,032	0,026
NITRITOS	mg N/I	7,1			0,020
	µg/l	•			
N° DE CÉLULAS TOTALES	n° cel/ml	1.585	Nº colulo	s/ml: 1.158	
CLASE PREDOMINANTE: ESPECIE PREDOMINANTE:	Criptofícea Rhodomonas	minuta		s/ml: 1.136	
		 7		=	1/200F
3ª CAMPAÑA			ha de muest		
PARÂMETRO	UNIDAD	OLEIS	OLEIM	OLEIF	OLTI
PROFUNDIDAD	m	1	19	38	
OSFORO TOTAL	mg P/I	0,069	0,085	0,094	0,099
OSFATOS	mg P/I	0,034	0,068	0,082	0,073
NITRÓGENO KJELDAHL	mg N /I	0,74	1,20	1,33	0,77
AMONIO TOTAL	mg N /I	0,06	0,23	0,35	0,12
NITRATOS	mg N /I	0,84	0,82	0,83	0,60
NITRITOS	mg N/I	0,037	0,032	0,028	0,024
CLOROFILA a	μg/l	12,0			
N° DE CÉLULAS TOTALES	n° cel/ml	3.208			
CLASE PREDOMINANTE:	Bacillariofice			s/ml: 2.288	
ESPECIE PREDOMINANTE:	Cyclostephan	os dubius	N° celula	ıs/ml: 1.486	
^{1ª} CAMPAÑA		Fed	ha de muest	reo: 27/07	//2005
PARÁMETRO	UNIDAD	OLEIS	OLEIM	OLEIF	OLTI
PROFUNDIDAD	m				
ÓSFORO TOTAL	mg P/I	0,032	0,054	0,096	0,153
OSFATOS	mg P/I	0,007	0,034	0,078	0,105
NITRÓGENO KJELDAHL	mg N/I	0,74	0,46	0,35	2,34
AMONIO TOTAL	mg N/I	0,26	0,03	0,08	2,33
NITRATOS	mg N/I	0,06	0,75	0,81	0,77
NITRITOS	mg N/I	0,019	0,010	0,038	0,064
41111103					
	ug/l	38,3			
CLOROFILA a	μg/l n° cel/ml	38,3 42.530			
CLOROFILA a N° DE CÉLULAS TOTALES CLASE PREDOMINANTE:	µg/l n° cel/ml Bacillariofíce	42.530	N° celula	ıs/ml: 33.05	8

ADICIONAL INFORME EMBALSE DE OLIANA 2004-2005

Durante el año 2022 se han revisado los datos del embalse de Oliana recopilados durante los años 2004 y 2005, en aplicación del Real Decreto 817/2015, de 11 de septiembre, por el que se establecen los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental, a partir de la trasposición de la Directiva Marco del Agua (DMA).

La metodología utilizada ha consistido en obtener del informe de dicho año los datos necesarios para estimar de nuevo el estado trófico y el potencial ecológico y, recalcular el valor correspondiente en cada variable y en el estado final del embalse, utilizando las métricas publicadas en 2015, lo que permite comparar el estado de los embalses en un ciclo interanual de forma homogénea.

En cada apartado considerado se indica la referencia del apartado del informe original al que se refiere este trabajo adicional.

1. ESTADO TRÓFICO

Para evaluar el grado de eutrofización o estado trófico de una masa de agua se aplican e interpretan una serie de indicadores de amplia aceptación. En cada caso, se ha tenido en cuenta el valor de cada indicador en función de las características limnológicas básicas de los embalses. Así, se han podido interpretar las posibles incoherencias entre los diversos índices y parámetros y establecer la catalogación trófica final en función de aquellos que, en cada caso, responden a la eutrofización de las aguas.

Dentro del presente estudio se han considerado los siguientes índices y parámetros:

a) Concentración de nutrientes. Fósforo total (PT)

La concentración de fósforo total en el epilimnion del embalse es un parámetro decisivo en la eutrofización ya que suele ser el factor limitante en el crecimiento y reproducción de las poblaciones algales o producción primaria. De entre los índices conocidos, se ha adoptado en el presente estudio, el utilizado por la Organización para la Cooperación y el Desarrollo Económico (OCDE) resumido en la tabla A1, ya que es

el que mejor refleja el grado trófico real en los casos estudiados y además es el de más amplio uso a nivel mundial y en particular en la Unión Europea (UE), España y la propia Confederación Hidrográfica del Ebro (CHE). Desde 1984 se demostró que los criterios de la OCDE, que relacionan la carga de nutrientes con las respuestas de eutrofización, eran válidos para los embalses españoles.

Tabla A1. Niveles de calidad según la concentración de fósforo total.

Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración PT (µg					
P/L)	0-4	4-10	10-35	35-100	>100

b) Fitoplancton (Clorofila a, densidad algal)

A diferencia del anterior, el fitoplancton es un indicador de respuesta trófica y, por lo tanto, integra todas las variables causales, de modo que está influido por otros condicionantes ambientales además de estarlo por los niveles de nutrientes. Se utilizan dos parámetros como estimadores de la biomasa algal en los índices: concentración de clorofila a en la zona fótica (µg/L) y densidad celular (nº células/ml).

Al contar en este estudio mayoritariamente con sólo una campaña de muestreo, y por tanto no contar con una serie temporal que nos permitiera la detección del máximo anual, se utilizaron las clases de calidad relativas a la media anual (tabla A2). La utilización de los límites de calidad relativos a la media anual de clorofila se basó en el hecho de que los muestreos fueron realizados durante la estación de verano. Según la bibliografía limnológica general, el verano coincidiría con un descenso de la producción primaria motivado por el agotamiento de nutrientes tras el pico de producción típico de finales de primavera. Por ello, la utilización de los límites o rangos relativos al máximo anual resultaría inadecuada.

Para la densidad celular, basamos nuestros límites de estado trófico en la escala logarítmica basada en los estudios limnológicos de Margalef, ya utilizada para incluir más clases de estado trófico en otros estudios (tabla A2). Estos resultados se ajustaban de forma más aproximada a los obtenidos mediante otras métricas estándar de la OCDE como las de P total o clorofila. En el presente estudio, los índices elegidos son los siguientes:

Tabla A2. Niveles de calidad según la clorofila a y la densidad algal del fitoplancton.

Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Clorofila a (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad (cél./ml)	<100	100-1000	1000-10000	10000-100000	>100000

c) Transparencia de la columna de agua. Disco de Secchi (DS)

Por su parte, la transparencia, medida como profundidad de visibilidad del disco de Secchi (media y mínimo anual en m), está también íntimamente relacionada con la biomasa algal, aunque más indirectamente, ya que otros factores como la turbidez debida a sólidos en suspensión, o los fenómenos de dispersión de la luz que se producen en aguas carbonatadas, afectan a esta variable.

Se utilizaron las clases de calidad relativas al mínimo anual de transparencia según criterios OCDE. Se utilizaron en este caso los rangos relativos al mínimo anual (tabla A3) debido a varios factores: por un lado, la transparencia en embalses es generalmente menor que en lagos; por otro lado, en verano se producen resuspensiones de sedimentos como consecuencia de los desembalses para regadío, y por último, la mayoría de los embalses muestreados son de aguas carbonatadas, con lo que la profundidad de Secchi subestimaría también la transparencia.

Tabla A3. Niveles de calidad según la transparencia.

Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Disco Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7

Catalogación trófica final

Se han considerado la totalidad de los índices expuestos, que se especifican en la tabla A4, estableciéndose el estado trófico global de los embalses estudiados según la metodología descrita a continuación, utilizando el valor promedio de los dos muestreos en su caso.

Tabla A4. Resumen de los parámetros indicadores de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración PT (μg	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cél./ml)	<100	100-1000	1000-10000	10000-100000	>100000

Sobre la base de esta propuesta, en la tabla A5 se incluye la catalogación de las diferentes masas de agua por parámetro. Así, para cada uno de los embalses, se asignó un valor numérico (de 1 a 5) según cada clase de estado trófico.

Tabla A5. Valor numérico asignado a cada clase de estado trófico.

ESTADO TRÓFICO	VALORACIÓN
Ultraoligotrófico	1
Oligotrófico	2
Mesotrófico	3
Eutrófico	4
Hipereutrófico	5

La valoración del estado trófico global final se calculó mediante la *media* de los valores anteriores, re-escalada a cinco rangos de estado trófico (es decir, el intervalo 1-5, de 4 unidades, dividido en 5 rangos de 0,8 unidades de amplitud).

2. ESTADO DE LA MASA DE AGUA

El **estado** de una masa de agua es el grado de alteración que presenta respecto a sus condiciones naturales, y viene determinado por el *peor valor* de su estado ecológico y químico.

El <u>estado ecológico</u> es una expresión de la calidad de la estructura y el funcionamiento de los ecosistemas acuáticos asociados a las aguas superficiales en relación con las condiciones de referencia (es decir, en ausencia de alteraciones). En el caso de los embalses se denomina potencial ecológico en lugar de estado ecológico. Se determina a partir de indicadores de calidad (biológicos y fisicoquímicos).

 El <u>estado químico</u> de las aguas es una expresión de la calidad de las aguas superficiales que refleja el grado de cumplimiento de las normas de calidad ambiental de las sustancias prioritarias y otros contaminantes.

2.1. POTENCIAL ECOLÓGICO

2.1.1. INDICADORES DE CALIDAD BIOLÓGICOS: FITOPLANCTON

Como consecuencia de la aprobación de la IPH (Instrucción de Planificación Hidrológica, Orden ARM/2656/2008), se ha realizado una aproximación al <u>potencial ecológico</u> para el elemento de calidad <u>fitoplancton</u> denominada *propuesta normativa*. En ella se establecen las condiciones de máximo potencial para los siguientes parámetros: clorofila a, biovolumen, Índice de Grupos Algales (IGA) y porcentaje de cianobacterias, en función de la tipología del embalse.

Se debe seguir el procedimiento descrito en el Protocolo MFIT-2013 Versión 2 para el cálculo del RCE de cada uno de los cuatro parámetros:

- Cálculo de Ratio de Calidad Ecológico (RCE)

Cálculo para clorofila a:

RCE= [(1/Chla Observado) / (1/Chla Máximo Potencial Ecológico)]

Cálculo para biovolumen:

RCE= [(1/biovolumen Observado) / (1/ biovolumen Máximo Potencial Ecológico)]

Cálculo para el Índice de Grupos Algales (IGA):

RCE= [(400-IGA Observado) / (400- IGA Máximo Potencial Ecológico)]

Cálculo para el porcentaje de cianobacterias:

RCE= [(100 - % cianobacterias Observado) / (100 - % cianobacterias Máximo Potencial Ecológico)]

1) Concentración de clorofila a

Del conjunto de pigmentos fotosintetizadores de las microalgas de agua dulce, la clorofila a se emplea como un indicador básico de biomasa fitoplanctónica. Todos los grupos de microalgas contienen clorofila a como pigmento principal, pudiendo llegar a

representar entre el 1 y el 2 % del peso seco total. La clasificación del potencial ecológico de acuerdo con la concentración de clorofila *a* se indica en la tabla A6.

Tabla A6. Clases de potencial ecológico según el RCE de la concentración de clorofila a.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,211	0,210 - 0,14	0,13 - 0,07	< 0,07
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,433	0,432 - 0,287	0,286 - 0,143	< 0,143
Rango <i>Tipo 12</i>	> 0,195	0,194 – 0,13	0,12 - 0,065	< 0,065
Rango <i>Tipo 13</i>	> 0,304	0,303 - 0,203	0,202 - 0,101	< 0,101
Valoración de cada clase	2	3	4	5

2) Biovolumen algal

El biovolumen es una medida mucho más precisa de la biomasa algal, por tener en cuenta el tamaño o volumen celular de cada especie, además del número de células. La clasificación del potencial ecológico de acuerdo al biovolumen de fitoplancton se indica en la tabla A7.

Tabla A7. Clases de potencial ecológico según el RCE del biovolumen algal del fitoplancton.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,189	0,188 - 0,126	0,125 - 0,063	< 0,063
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,362	0,361 – 0,24	0,23 - 0,12	< 0,12
Rango Tipo 12	> 0,175	0,174 – 0,117	0,116 – 0,058	< 0,058
Rango Tipo 13	> 0,261	0,260 - 0,174	0,173 – 0,087	< 0,087
Valoración de cada clase	2	3	4	5

3) Índice de grupos algales (IGA)

Se ha aplicado un índice basado en el biovolumen relativo de diferentes grupos algales del fitoplancton, denominado *IGA*, y que viene siendo utilizado por CHE desde 2010.

El índice IGA se expresa:

$$Iga = \frac{1 + 0.1*Cr + Cc + 2*(Dc + Chc) + 3*Vc + 4*Cia}{1 + 2*(D + Chc) + Chnc + Dhc}$$

Siendo,

Cr	Criptófitos	Cia	Cianobacterias
Cc	Crisófitos coloniales	D	Dinoflageladas
Dc	Diatomeas coloniales	Cnc	Crisófitos no coloniales
Chc	Clorococales coloniales	Chnc	Clorococales no coloniales
Vc	Volvocales coloniales	Dnc	Diatomeas no coloniales

En cuanto al *IGA*, se han considerado los rangos de calidad establecidos en la tabla A8.

Tabla A8. Clases de potencial ecológico según el RCE del Índice de Grupos Algales (IGA).

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,974	0,973 - 0,649	0,648 - 0,325	< 0,325
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,982	0,981 – 0,655	0,654 - 0,327	< 0,327
Rango Tipo 12	> 0,929	0,928 - 0,619	0,618 – 0,31	< 0,31
Rango Tipo 13	> 0,979	0,978 - 0,653	0,652 - 0,326	< 0,326
Valoración de cada clase	2	3	4	5

4) Porcentaje de cianobacterias

El aumento de la densidad relativa de cianobacterias se ha relacionado en numerosas ocasiones con procesos de eutrofización.

Para el cálculo del porcentaje de cianobacterias se ha utilizado el procedimiento descrito en el Protocolo de análisis y cálculo de métricas de fitoplancton en lagos y embalses Versión 2 (MAGRAMA, 2016). Se aplica para el cálculo la siguiente fórmula:

$$\%CIANO = \frac{\text{BVOLcia} - \left[\text{BVOLchr} - \left(\text{BVOLmic} + \text{BVOLwor}\right)\right]}{BVOLtot}$$

Donde: BVOL_{CIA} Biovolumen de cianobacterias totales

BVOL_{CHR} Biovolumen de Chroococcales

BVOL_{MIC} Biovolumen de *Microcystis*

BVOLWOR Biovolumen de Woronichinia

BVOL_{TOT} Biovolumen total de fitoplancton

Los valores de cambio de clases se establecen como se muestran en la tabla A9.

Tabla A9. Clases de potencial ecológico según el RCE del porcentaje de cianobacterias.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,908	0,907 - 0,607	0,606 - 0,303	< 0,303
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,715	0,714 - 0,48	0,47 - 0,24	< 0,24
Rango Tipo 12	> 0,686	0,685 - 0,457	0,456 - 0,229	< 0,229
Rango Tipo 13	> 0,931	0,930 - 0,621	0,620 - 0,31	< 0,31
Valoración de cada clase	2	3	4	5

Posteriormente, es necesario llevar a cabo la *transformación de los valores de RCE obtenidos* a una escala numérica equivalente para los cuatro indicadores (RCEtrans). Las ecuaciones varían en función del tipo de embalse.

Tipos 1, 2 y 3

Clorofila a		
RCE>0,21	RCE _{trans} = 0,5063 x RCE + 0,4937	
RCE ≤0,21	RCE _{trans} = 2,8571 x RCE	
Biovolumen		

Diovolumen	
RCE >0,19	RCE _{trans} = 0,4938 x RCE + 0,5062
RCE ≤0,19	RCE _{trans} = 3,1579 x RCE

% Cianobacterias	
RCE >0,91	RCE _{trans} = 4,4444 x RCE - 3,4444
RCE ≤0,91	RCE _{trans} = 0,6593 x RCE

Índice de Grupos Algales (IGA)	
RCE >0,9737	RCE _{trans} = 15,234 x RCE - 14,233
RCE ≤0,9737	RCE _{trans} = 0,6162 x RCE

Tipos 7, 8, 9, 10 y 11

Clorofila a	
RCE>0,43	RCE _{trans} = 0,7018 x RCE + 0,2982
RCE ≤0,43	RCE _{trans} = 1,3953 x RCE

Biovolumen	
RCE >0,36	RCE _{trans} = 0,625 x RCE + 0,375
RCE ≤0,36	RCE _{trans} = 1,6667 x RCE

% Cianobacterias	
RCE >0,72	RCE _{trans} = 1,4286 x RCE - 0,4286
RCE ≤0,72	RCE _{trans} = 0,8333 x RCE

Índice de Grupos Algales (IGA)	
RCE >0,9822	RCE _{trans} = 22,533 x RCE - 21,533
RCE ≤0,9822	RCE _{trans} = 0,6108 x RCE

Tipos 6 y 12

Clorofila a	
RCE >0,195	RCE _{trans} =0,497x RCE + 0,503
RCE ≤ 0,195	RCE _{trans} = 3,075 x RCE

Biovolumen	
RCE > 0,175	RCE _{trans} = 0,4851 x RCE + 0,5149
RCE ≤ 0,175	RCE _{trans} = 3,419 x RCE

% Cianobacterias	
RCE > 0,686	RCE _{trans} = 1,2726x - 0,2726
RCE ≤ 0.686	RCE _{trans} = 0.875 x RCE

Índice de Grupos Algales (IGA)	
RCE > 0,929	RCE _{trans} = 5,6325x - 4,6325
RCE ≤ 0,929	RCE _{trans} = 0,6459 x RCE

Tipo 13

Clorofila a		
	RCE > 0,304	RCE _{trans} = 0,575 x RCE + 0,425
	RCE ≤ 0,304	RCE _{trans} = 1,9714 x RCE

Biovolumen		
	RCE > 0,261	RCE _{trans} = 0,541x RCE + 0,459
	RCE ≤ 0,261	RCE _{trans} = 2,3023 x RCE

% Cianobacterias		
R	CE > 0,931	RCE _{trans} = 5,7971 x RCE - 4,7971
R	CE ≤ 0,931	RCE _{trans} = 0,6445 x RCE

Índice de Grupos Algales (IGA)		
RCE > 0,979	RCE _{trans} = 18,995 x RCE - 17,995	
RCE ≤ 0,979	RCE _{trans} = 0,6129 x RCE	

Para la combinación de los distintos indicadores representativos del elemento de calidad fitoplancton se hallará la *media* de los RCE transformados correspondientes a los parámetros "abundancia-biomasa" y "composición". La combinación de los RCE transformados se llevará a cabo primero para los indicadores de clorofila y biovolumen, ambos representativos de la <u>abundancia</u>. La combinación se hará mediante las *medias* de los RCE transformados.

Posteriormente se llevará a cabo la combinación de los indicadores representativos de la <u>composición</u>: porcentaje de cianobacterias y el IGA. La combinación se hará mediante las *medias* de los RCE transformados. Finalmente, para la combinación de los indicadores de composición y abundancia-biomasa se hará la *media aritmética*.

El valor final de la combinación de los RCE transformados se clasificará de acuerdo a la siguiente escala de la tabla A10:

Tabla A10. Ratios de calidad según el índice de potencial ecológico normativo RCEtrans.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
RCEtrans	> 0,6	0,4-0,6	0,2-0,4	<0,2
Valoración de cada clase	2	3	4	5

Tabla A11. Valores de referencia propios del tipo (VR_t) y límites de cambio de clase de potencial ecológico (B⁺/M, Bueno o superior-Moderado; M/D, Moderado-Deficiente; D/M, Deficiente-Malo) de los indicadores de los elementos de calidad de embalses (*RD 817/2015*). Se han incluido sólo los tipos de embalses presentes en el ESTUDIO.

Tipo	Elemento	Parámetro	Indicador	VRt	B ⁺ /M (RCE)	M/D (RCE)	D/M (RCE)	
		5.	Clorofila a mg/m ³	2,00	0,211	0,14	0,07	
	Fitoplancton	Biomasa	Biovolumen mm³/L	0,36	0,189	0,126	0,063	
Tipo 1		lancton	Índice de Catalán (IGA)	0,10	0,974	0,649	0,325	
		Composición	Porcentaje de cianobacterias	0,00	0,908	0,607	0,303	
			Clorofila a mg/m ³	2,60	0,433	0,287	0,143	
		Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12	
Tipo 7	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327	
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24	
		Diamana	Clorofila a mg/m ³	2,60	0,433	0,287	0,143	
		Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12	
Tipo 9	Fitoplancton	toplancton Composición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327	
			Porcentaje de cianobacterias	0,00	0,715	0,48	0,24	
	Fitoplancton	Biomasa	Clorofila a mg/m ³	2,60	0,433	0,287	0,143	
			Biovolumen mm³/L	0,76	0,362	0,24	0,12	
Tipo 10		Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24	
		Diamons	Clorofila a mg/m ³	2,60	0,433	0,287	0,143	
		Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12	
Tipo 11	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327	
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24	
		D:	Clorofila a mg/m ³	2,40	0,195	0,13	0,065	
		Biomasa	Biovolumen mm³/L	0,63	0,175	0,117	0,058	
Tipo 12	Fitoplancton		Índice de Catalán (IGA)	1,50	0,929	0,619	0,31	
		Composición	Porcentaje de cianobacterias	0,10	0,686	0,457	0,229	
		Piomoso	Clorofila a mg/m ³	2,10	0,304	0,203	0,101	
		Biomasa	Biovolumen mm³/L	0,43	0,261	0,174	0,087	
Tipo 13	Fitoplancton		Índice de Catalán (IGA)	1,10	0,979	0,653	0,326	
		Composición	Porcentaje de cianobacterias	0,00	0,931	0,621	0,31	

2.1.2. INDICADORES DE CALIDAD FISICOQUÍMICOS

Todavía la normativa no ha desarrollado qué indicadores fisicoquímicos se emplean en embalses, pero por similitud con los que se recogen para lagos (Real Decreto 817/2015) se utilizan los siguientes:

1) Transparencia

La transparencia es un elemento válido para evaluar el grado trófico del embalse; tiene alta relación con la productividad biológica; y además tiene rangos establecidos fiables y de utilidad para el establecimiento de los límites de clase del potencial ecológico. Se ha evaluado a través de la profundidad de visión del disco de Secchi (DS), considerando su valor para la obtención de las distintas clases de potencial (tabla A12).

Tabla A12. Clases de potencial ecológico según la profundidad de visión del Disco de Secchi.

Clase de potencial ecológico	Muy Bueno	Bueno	Moderado
Disco de Secchi (DS, m)	> 6	6 - 3	< 3
Valoración de cada clase	1	2	3

2) Condiciones de oxigenación

Representa un parámetro secundario de la respuesta trófica que viene a indicar la capacidad del sistema para asimilar la materia orgánica autóctona, generada por el propio sistema a través de los productores primarios en la capa fótica, y la materia orgánica alóctona, es decir, aquella que procede de fuentes externas al sistema, como la procedente de focos de contaminación puntuales o difusos.

Se ha evaluado estimando la reserva media de oxígeno hipolimnético en el periodo de muestreo, correspondiente al periodo de estratificación. En el caso de embalses no estratificados se consideró la media de oxígeno en toda la columna de agua. Las clases consideradas han sido las correspondientes a la concentración de oxígeno en la columna de agua; parámetro vital para la vida piscícola. En la tabla A13 se resumen los límites establecidos.

Tabla A13. Clases de potencial ecológico según la concentración de oxígeno disuelto en el hipolimnion o en toda la columna de agua, cuando el embalse no está estratificado.

Clase de potencial ecológico	Muy Bueno	Bueno	Moderado
Concentración hipolimnética (mg/L O ₂)	> 8	8 - 6	< 6
Valoración de cada clase	1	2	3

51

3) Concentración de nutrientes

En este caso se ha seleccionado el fósforo total (PT), ya que su presencia a determinadas concentraciones en un embalse acarrea procesos de eutrofización, pues en la mayoría de los casos es el principal elemento limitante para el crecimiento de las algas.

Se ha empleado el resultado obtenido en la muestra integrada, considerando los criterios de la OCDE especificados en la tabla A14 (OCDE, 1982) adaptado a los intervalos de calidad del RD 817/2015.

Tabla A14. Clases de potencial ecológico según la concentración de fósforo total.

Clase de potencial ecológico	Muy Bueno	Bueno	Moderado
Concentración de PT (μg P/L)	0 - 4	4 -10	> 10
Valoración de cada clase	1	2	3

Si se toman varios datos anuales, se hace la mediana de los valores anuales.

Posteriormente se elige el *peor valor* de los tres indicadores (transparencia, condiciones de oxigenación y fósforo total).

4) Sustancias preferentes y contaminantes específicos de cuenca

Dentro de los indicadores fisicoquímicos también se tienen en cuenta las **sustancias preferentes y contaminantes específicos de cuenca.** El valor medio de los datos anuales se revisa para ver si *cumple* o no con la Norma de Calidad Ambiental (NCA) del Anexo V del RD 817/2015. Si incumple supone asignarle para los indicadores fisicoquímicos la categoría de moderado.

Tabla A15. Clases de potencial ecológico para sustancias preferentes y contaminantes específicos de cuenca.

Clase de potencial ecológico	Muy Bueno	Moderado
Sustancias preferentes y contaminantes específicos de cuenca	Cumple NCA	No cumple NCA
Valoración de cada clase	2	3

El <u>potencial ecológico</u> resulta del *peor valor* entre los indicadores biológicos y fisicoquímicos.

Tabla A16. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico
Bueno o superior	Muy bueno	Bueno o superior
Bueno o superior	Bueno	Bueno o superior
Bueno o superior	Moderado	Moderado
Moderado		Moderado
Deficiente	Indistinto	Deficiente
Malo		Malo

2.2. ESTADO QUÍMICO

El <u>estado químico</u> es "*no bueno*" cuando hay algún incumplimiento de la Norma de Calidad Ambiental, bien sea como media anual (NCA_MA), como máximo admisible (NCA_CMA) o en la biota (NCA_biota) para las **sustancias prioritarias y otros contaminantes**. Las NCA se recogen en el *Anexo IV del RD 817/2015*.

Tabla A17. Clases de estado químico para sustancias prioritarias y otros contaminantes.

Clase de estado químico	Bueno	No alcanza el buen estado
Sustancias prioritarias y otros contaminantes	Cumple NCA	No cumple NCA
Valoración de cada clase	2	3

2.3. ESTADO

El <u>estado</u> de la masa de agua es el *peor valor* entre su potencial ecológico y su estado químico.

Tabla A18. Determinación del estado.

Estado	Estado Químico				
Potencial Ecológico	Bueno No alcanza el buen estad				
Bueno o superior	Bueno				
Moderado		Inferior a bueno			
Deficiente	Inferior a bueno				
Malo					

DIAGNÓSTICO DEL ESTADO TRÓFICO DEL EMBALSE DE OLIANA

Se han considerado los indicadores especificados en la tabla A19 para los valores medidos en el embalse, estableciéndose el estado trófico global del embalse según la metodología descrita.

Tabla A19. Parámetros indicadores y rangos de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración P (μg P /L)	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cél./ml)	<100	100-1000	1000-10000	10000-100000	>100000
VALOR PROMEDIO	< 1,8	1,8 - 2,6	2,6 - 3,4	3,4 - 4,2	> 4,2

En la tabla A20a se incluye el estado trófico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según la valoración de este estado trófico final para la campaña de muestreo de 2004.

Tabla A20a. Diagnóstico del estado trófico del embalse de Oliana 2004.

INDICADOR	VALOR	ESTADO TRÓFICO
CONCENTRACIÓN P TOTAL	5,00	Oligotrófico
DISCO SECCHI	2,20	Mesotrófico
CLOROFILA a	19,30	Eutrófico
DENSIDAD ALGAL	19081	Eutrófico
ESTADO TRÓFICO FINAL	3,25	MESOTRÓFICO

Atendiendo a los criterios seleccionados, la concentración de P total ha clasificado el embalse como oligotrófico; la transparencia como mesotrófico; la concentración de clorofila *a* como eutrófico y la densidad algal como eutrófico. Combinando todos los indicadores, el estado trófico final para el embalse de Oliana en 2004 ha resultado ser **MESOTRÓFICO**.

En la tabla A20b se incluye el estado trófico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según la valoración de este estado trófico final para la campaña de muestreo de 2005.

Tabla A20b. Diagnóstico del estado trófico del embalse de Oliana 2005.

INDICADOR	VALOR	ESTADO TRÓFICO
CONCENTRACIÓN P TOTAL	69,00	Eutrófico
DISCO SECCHI	2,10	Mesotrófico
CLOROFILA a	12,00	Eutrófico
DENSIDAD ALGAL	3208	Mesotrófico
ESTADO TRÓFICO FINAL	3,50	EUTRÓFICO

Atendiendo a los criterios seleccionados, la concentración de P total ha clasificado el embalse como eutrófico; la transparencia como mesotrófico; la concentración de clorofila *a* como eutrófico y la densidad algal como mesotrófico. Combinando todos los indicadores, el estado trófico final para el embalse de Oliana en 2005 ha resultado ser **EUTRÓFICO**.

DIAGNÓSTICO DEL ESTADO FINAL DEL EMBALSE DE OLIANA

En la mayoría de los casos en lugar del estado de la masa, sólo se puede establecer el potencial ecológico (además sin tener en cuenta la presencia de sustancias preferentes y contaminantes específicos de cuenca, para los indicadores fisicoquímicos). Tampoco se han estudiado las sustancias prioritarias y otros contaminantes que permitan determinar el estado químico, por eso se diagnostica la masa con el **potencial ecológico**.

Se han considerado los indicadores, los valores de referencia y los límites de clase B+/M (Bueno o superior/Moderado), M/D (Moderado/Deficiente) y D/M (Deficiente/Malo), así como sus ratios de calidad ecológica (RCE), especificados en las tablas A21 y A22.

Tabla A21. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo.

			RANGOS DEL RCE						
Indicador	Elementos	Parámetros	Bueno o superior		Moderado	Deficiente	Malo		
		Clorofila <i>a</i> (μg/L)	≥ 0,433		0,432 – 0,287	0,286 - 0,143	< 0,143		
Biológico	Fitoplancton	Biovolumen algal (mm³/L)	≥ 0,362		≥ 0,362 0,361 – 0,		0,361 – 0,24	0,23 – 0,12	< 0,12
		Índice de Catalán (IGA)	≥ 0,	982	0,981 – 0,655	0,654 – 0,327	< 0,327		
		Porcentaje de cianobacterias	≥ 0,	715	0,714 - 0,48	0,47 - 0,24	< 0,24		
	Bueno o superior		Moderado	Deficiente	Malo				
INDICADOR BIOLÓGICO			> 0,6		0,4 - 0,6	0,2 - 0,4	< 0,2		
				R/	ANGOS DE VAL	ORES			
Indicador	Elementos	Parámetros	Muy bueno	Bueno	Moderado Deficiente		Malo		
	Transparencia	Disco de Secchi (m)	> 6	3 - 6	1,5 - 3	0,7 - 1,5	< 0,7		
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	> 8	8 - 6	6 - 4	4 - 2	< 2		
	Nutrientes	Concentración de PT (µg P/L)	0 - 4	4 - 10	10 - 35	35 - 100	> 100		
	•	Muy bueno	Bueno		Moderado				
INDIC	INDICADOR FISICOQUÍMICO			1,6 - 2,4		> 2,4			

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico normativo sigue el esquema de decisiones indicado en la tabla A22.

Tabla A22. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico (PE)
Bueno o superior	Muy bueno	Bueno o superior
Bueno o superior	Bueno	Bueno o superior
Bueno o superior	Moderado	Moderado
Moderado		Moderado
Deficiente	Indistinto	Deficiente
Malo		Malo

En la tabla A23a se incluye el potencial indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según el potencial ecológico, tras pasar el filtro del indicador fisicoquímico para el año 2004.

Tabla A23a. Diagnóstico del potencial ecológico del embalse de Oliana 2004.

Indicador	Elementos	Parámetro	Indicador	Valor	RCE	RCET	PE
Biológico	Fitoplancto	n Biomasa	Clorofila a (µg/L)	19,30	0,12	0,17	Deficinte
INDICADOR BIOLÓGICO					4	DEFICIENTE	
Indica	ador	Elementos	Indicador		Valor		PE
Fisicoquímico		Transparencia	Disco de Secchi (m)	2,20 7,67 5,00		Moderado	
		Oxigenación	O ₂ hipolimnética (mg O ₂ /L)			Bueno	
		Nutrientes	Concentración de PT (µg P/L)			Bueno	
INDICADOR FISICOQUÍMICO					3		MODERADO
POTENCIAL ECOLÓGICO				DEFICIENTE			
ESTADO FINAL				INFERIOR A BUENO			BUENO

De acuerdo con los resultados obtenidos, el Estado Final del embalse de Oliana para el año 2004 es de nivel 3, **INFERIOR A BUENO**.

En la tabla A23b se incluye el potencial indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según el potencial ecológico, tras pasar el filtro del indicador fisicoquímico para el año 2005.

 Tabla A23b. Diagnóstico del potencial ecológico del embalse de Oliana 2005.

Indicador	Elemento	s Parámetro	Indicador	Valor	RCE	RCET	PE
Biológico	Fitoplancto	n Biomasa	Clorofila a (µg/L)	12,00	0,30	0,42	Moderado
INDICADOR BIOLÓGICO				3			MODERADO
Indica	ador	Elementos	Indicador		Valor		PE
		Transparencia	Disco de Secchi (m)	2,10		Moderado	
Fisicoquímico		Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	8,50		Muy Bueno	
		Nutrientes	Concentración de PT (µg P/L)		69,00		Deficiente
INDICADOR FISICOQUÍMICO					3 <u>MOI</u>		
POTENCIAL ECOLÓGICO				MODERADO			
ESTADO FINAL				INFERIOR A BUENO			

De acuerdo con los resultados obtenidos, el Estado Final del embalse de Oliana para el año 2005 es de nivel 3, **INFERIOR A BUENO**.