EJECUCIÓN DE TRABAJOS RELACIONADOS CON LOS REQUISITOS DE LA DIRECTIVA **MARCO** (2000/60/CE) EN EL ÁMBITO DE LA CONFEDERACIÓN HIDROGRÁFICA DEL **EBRO** REFERIDOS **ELABORACIÓN** DEL REGISTRO **ZONAS** DE PROTEGIDAS, DETERMINACIÓN DEL POTENCIAL ECOLÓGICO DE LOS EMBALSES, DESARROLLO DE PROGRAMAS ESPECÍFICOS DE INVESTIGACIÓN

MINISTERIO

EMBALSE DE LANUZA

ÍNDICE

	Página
1. INTRODUCCIÓN	1
2. DESCRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE	1
2.1. Ámbito geográfico	1
2.2. Características morfométricas e hidrológicas	2
2.3. Usos del agua	4
2.4. Registro de zonas protegidas	4
3. DESCRIPCIÓN DE LOS TRABAJOS REALIZADOS	5
4. DIAGNÓSTICO DE LA SITUACIÓN ACTUAL	7
4.1. Características físico-químicas de las aguas	7
4.2. Hidroquímica del embalse	9
4.3. Productores primarios y concentración de pigmentos fotosintetizadores	13
4.3.1. Cualidad bioindicadora	16
5. DIAGNÓSTICO DEL GRADO TRÓFICO	16
6. DEFINICIÓN DEL POTENCIAL ECOLÓGICO	17
ANEXO I. RESULTADOS FÍSICO QUÍMICOS	
ANEXO II. RESULTADOS QUÍMICOS	
ANEXO III. RESULTADOS BIOLÓGICOS	
REPORTAJE FOTOGRÁFICO	
APÉNDICE 1. FICHA DESCRIPTIVA DEL EMBALSE	

1. INTRODUCCIÓN

El presente documento recoge los resultados de los trabajos realizados en el embalse de Lanuza y la interpretación de los mismos, con una disposición temática similar para los 47 embalses estudiados, a efectos de proporcionar una referencia fija que facilite la consulta y explotación de la información contenida en ellos.

En general, se recurre a presentaciones gráficas y sintéticas de la información, acompañadas de un texto conciso, lo que permitirá una ágil y rápida consulta del documento. Los listados de datos analíticos se adjuntan en tres anexos que completan el presente documento. Por último, tras los anexos, se presenta un reportaje fotográfico que refleja el estado del embalse durante el periodo estudiado (años 2004-2005).

En apartados sucesivos se comentan los siguientes aspectos:

- Resultados del estudio en el embalse (FASE DE CARACTERIZACIÓN) de todos los aspectos tratados (hidráulicos, físico-químicos y biológicos), que culminan en el diagnóstico del grado trófico.
- Definición del "Potencial Ecológico", tras la aplicación de indicadores biológicos,
 físico-químicos e hidromorfológicos propuestos en la Directiva Marco de Aguas.

2. DESCRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE

2.1. Ámbito geográfico

La cuenca vertiente al embalse de Lanuza se sitúa en los Pirineos Centrales, en el límite con Francia, ocupando la parte Norte de la provincia de Huesca. En la cuenca predominan los materiales hercínicos, los depósitos cuaternarios de la cabecera del río Gállego y los batolitos granodioríticos del macizo de Panticosa.

El embalse, cuya presa fue terminada en 1.978, se sitúa en la localidad de Lanuza, provincia de Huesca. Regula, principalmente, las aguas de los ríos Gállego y Aguas

Limpias, aunque también las de otros barrancos de menor entidad, entre los que destacan, por margen derecha, los barrancos Suscalar y Portet.

2.2. Características morfométricas e hidrológicas

Es un embalse de pequeñas dimensiones que no presenta grandes variaciones morfológicas en el eje longitudinal.

La cuenca vertiente al embalse del Ebro tiene una superficie total de 11 716,31 ha. El embalse tiene una extensión de 111 ha en su máximo nivel normal y una capacidad total de 25 hm³. Tiene una profundidad media de 22,5 m, mientras que la profundidad máxima alcanza los 69 m. En el cuadro I se presentan las características morfométricas del embalse y de las subcuencas.

Cuadro I: Características morfométricas del embalse y subcuencas

Superficie de la cuenca total (ha)	11 716,31
Superficie de la cuenca parcial (ha)	-
Superficie de la subcuenca de escorrentía (ha)	-
Superficie del embalse (ha)	111
Longitud máxima del embalse (km)	2,8
Capacidad total (hm³)	25
Capacidad útil (hm³)	-
Profundidad máxima (m)	69
Profundidad media (m)	22,5
Perímetro en máximo nivel (km)	7
Cota máximo nivel embalsado (msnm)	1283,5
Cota(s) de la toma(s) de agua principal(es) (msnm)	1255; 1250; 1235,7

Se trata de un embalse monomíctico¹, típico de zonas templadas. En el periodo estival se aprecian dos gradientes térmicos, uno superficial (3 m en verano de 2004, 7 m en verano de 2005) y otro en los últimos metros de profundidad (35 y 36 m para los veranos de 2004 y 2005, respectivamente). La capa fótica en el estío oscila entre los 5 y 6 metros de espesor.

En el **cuadro II** se presentan las medias mensuales de la explotación hidráulica correspondientes al periodo 2004-2005.

Cuadro II: Parámetros hidráulicos mensuales. Año hidrológico 2004-2005

	В	ALANCE HIDRÁULIC	O MENSUAL		
Periodo	Volumen	Salidas totales	Entradas Totales	Ts	Te
	Hm³	Hm³	Hm³	años	años
Octubre	11,79	12,10	16,88	0,08	0,06
Noviembre	12,21	19,60	18,63	0,05	0,05
Diciembre	11,69	94,85	94,18	0,01	0,01
Enero	11,39	12,45	12,45	0,08	0,08
Febrero	11,38	11,63	10,58	0,08	0,08
Marzo	10,81	17,80	20,18	0,05	0,05
Abril	12,85	24,48	26,40	0,04	0,04
Mayo	13,03	38,98	38,03	0,03	0,03
Junio	15,25	27,10	29,55	0,05	0,04
Julio	16,36	12,80	13,60	0,11	0,10
Agosto	13,81	14,03	7,55	0,08	0,16
Septiembre	8,61	15,73	12,73	0,05	0,06
Total anual	12,43	301,53	300,73	0,04	0,04

El tiempo de residencia del agua es muy bajo a lo largo de todo el año, adquiriendo la media anual un valor de 15 días. Los mínimos se obtienen en el mes de diciembre –4 días-; y los máximos en los meses de verano –julio y agosto-, alcanzando en julio, según las salidas, un valor de 1 mes, y en agosto, considerando las entradas, de prácticamente 2 meses.

-

Significa que presenta un único ciclo anual de mezcla-estratificación vertical.

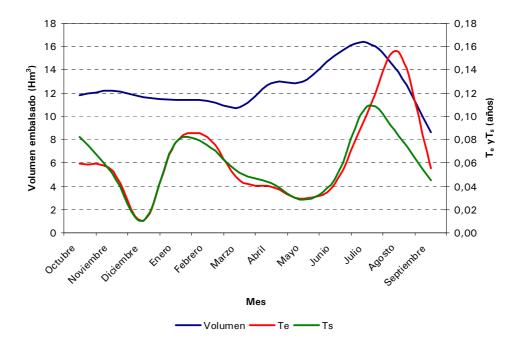


Figura 1: Volumen embalsado y tiempo de retención del agua

2.3. Usos del agua

Las aguas del embalse se destinan principalmente a la producción hidroeléctrica y, en menor medida, al riego. La principal actividad recreativa del embalse es la pesca deportiva, encontrándose prohibida la navegación a motor.

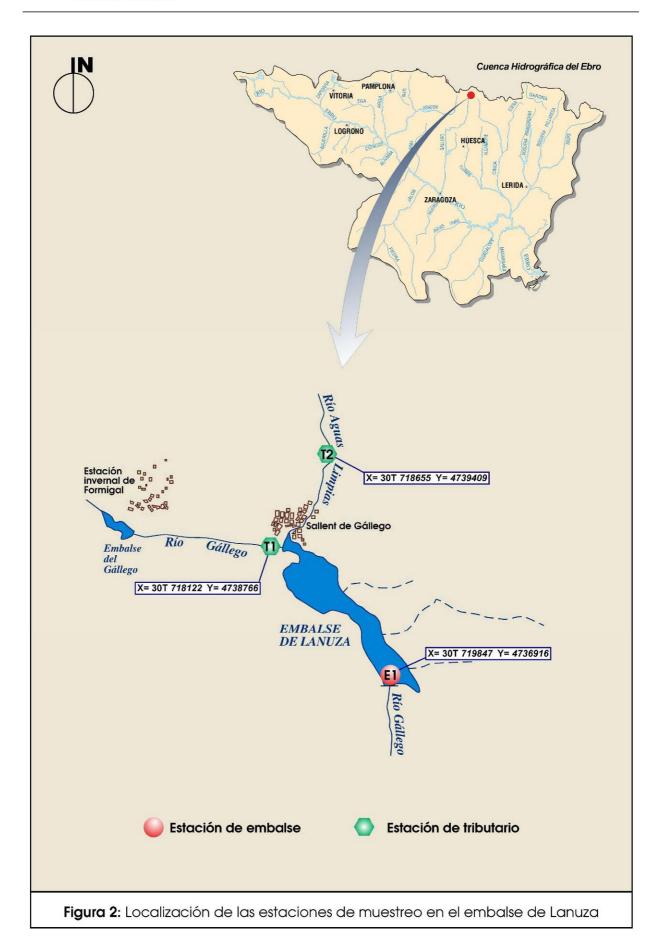
2.4. Registro de zonas protegidas

El embalse de Lanuza forma parte del Registro de Zonas Protegidas elaborado por la Confederación Hidrográfica del Ebro, en contestación al artículo 6 de la Directiva Marco del Agua, dentro de la categoría *Zonas de protección de habitats o especies*.

La cabecera del embalse limita con el LIC ES2410031 "Foz Escarrilla-Cucuraza". En éste área domina el pastizal subalpino en las zonas más altas, bajo las acumulaciones de derrubios provenientes de las zonas de cumbres. Conforme se desciende en altura, aparecen bosques mixtos caducifolios, dominados por *Quercus gr. cerrioides* y

combinados con prados de siega. Entre la fauna asociada a ecosistemas acuáticos se distingue el desmán de los Pirineos (*Galemys pyrenaicus*) y la nutria (*Lutra lutra*).

3. DESCRIPCIÓN DE LOS TRABAJOS REALIZADOS

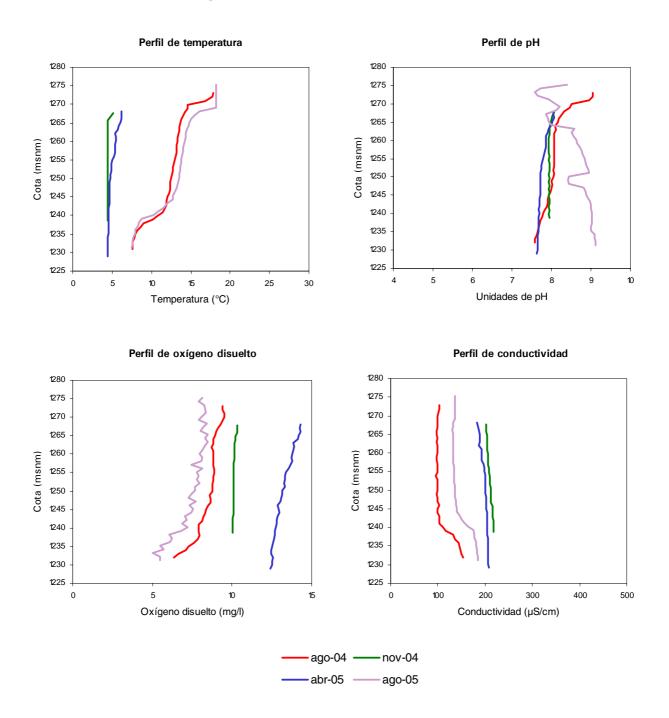

Para acometer la caracterización del embalse se han ubicado tres estaciones de muestreo, una en las inmediaciones de la presa (E1) y dos más en tributarios, la primera en el río Gállego (T1), antes de su ingreso al embalse, y la segunda en el río Aguas Limpias (T2), aguas arriba de Sallent de Gállego (ver Figura 2). Una descripción detallada de los trabajos realizados en el marco del Estudio se presenta en el apartado 4.1. de la MEMORIA DEL ESTUDIO.

En total se han realizado 4 campañas de muestreo en el embalse, distribuidas a lo largo de los años 2004 y 2005. En el **cuadro III** se presentan las fechas de los muestreos y si en esa fecha hay estratificación térmica en el embalse.

Cuadro III: Campañas y fechas de muestreo

1ª Campaña	10/08/2004	Estratificación
2ª Campaña	22/11/2004	Mezcla
3ª Campaña	07/04/2005	Mezcla
4ª Campaña	01/08/2005	Estratificación

4. DIAGNÓSTICO DE LA SITUACIÓN ACTUAL


4.1. Características físico-químicas de las aguas

Los resultados físico-químicos de cada una de las campañas de muestreo se presentan en el **Anexo I**. Del comportamiento observado se desprenden las siguientes apreciaciones:

- La temperatura del agua es baja, oscilando entre los 4,4 °C –mínimo invernal- y los 18,3 °C, -máximo registrado en el estío-. En la época estival la columna de agua presenta dos gradientes térmicos. El primero se localiza a 3 m de profundidad en verano de 2004 y a 7 m en verano de 2005; el segundo, situado en las capas más profundas, oscila entre los 35 y 36 metros de profundidad.
- El pH del agua es ligeramente alcalino, con un valor medio anual de 8,12 ud. El máximo alcanza un valor de 9,12 ud, mientras que el mínimo se sitúa en 7,57 ud.
- La transparencia del agua es baja, con un registro medio anual en la lectura de disco de Secchi de 2,1 m, lo que supone una profundidad de la capa fótica en torno a 4 metros. El mínimo (0,9 m) se registra en la campaña de invierno, mientras que el máximo (3,6 m) se registra en agosto de 2004.
- Las condiciones de oxigenación de la columna de agua son buenas, alcanzando durante el periodo de estudio una concentración media de 9,67 mg/l O₂. El mínimo, 5,02 mg/l O₂ se registra en la campaña de agosto de 2005 a 40 metros de profundidad. El máximo (14,31 mg/l O₂) se da en primavera, donde la concentración media para toda la columna de agua se sitúa 13,21 mg/l O₂.
- La conductividad de las aguas es moderada, situándose la media anual en 162 μ S/cm. El máximo alcanza un valor de 218 μ S/cm, mientras que el mínimo se sitúa en 96 μ S/cm.

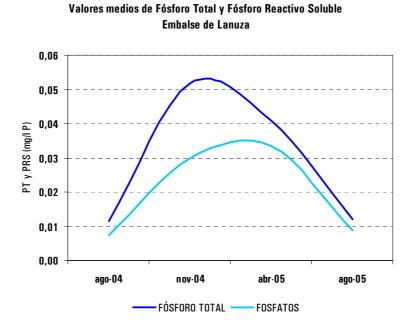
Figura 3: Perfiles físico-químicos del embalse

4.2. Hidroquímica del embalse

De los resultados analíticos obtenidos a lo largo del periodo 2004-2005, y que se presentan en el **Anexo II**, se desprenden las siguientes conclusiones:

 Las concentraciones de nutrientes presentes en el embalse son moderadas, con unas concentraciones medias anuales de fósforo total y de nitrógeno inorgánico total de 0,029 mg/l P y 0,18 mg/l N, respectivamente.

Las mayores concentraciones de fósforo total se dan en el periodo de mezcla (invierno y primavera), presentando un máximo invernal de 0,052 mg/l P. La concentración estival oscila entre 0,011 y 0,012 mg/l P. Los ortofosfatos mantienen la misma pauta, exceptuando que el valor máximo -0,033 mg/l P- se localiza en primavera.


El nitrógeno inorgánico total (NIT) presenta su máximo en primavera con una concentración de 0,23 mg/l N, en la época estival la concentración ronda los 0,2 mg/l N, mientras que el mínimo invernal se sitúa en 0,07 mg/l N. Entre las formas inorgánicas la dominante es la de nitratos (NO $_3$ /NIT=83%), siendo las proporciones de amonio y nitritos moderadas (NH $_4$ /NIT=8% NO $_2$ /NIT=9%). Cabe citar que la concentración de nitritos obtenida en las muestras de fondo de invierno y en la superficial de primavera, superan el umbral establecido para vida piscícola de tipo ciprinícolas (\le 0,03 mg/l NO $_2$), con unas concentraciones de 0,062 y 0,035 mg/l NO $_2$, respectivamente.

Los tributarios aportan al embalse una alta concentración de nutrientes, siendo el tributario principal, río Gállego, el que presenta mayores concentraciones de fósforo total y nitrógeno inorgánico total. Los valores medios de fósforo total, obtenidos en el periodo de estudio, han sido de 0,44 mg/l P para el río Gállego y de 0,13 mg/l P para el río Aguas Limpias. La evolución temporal pone de manifiesto que durante la época estival los nutrientes sufren un acusado incremento debido, posiblemente, al aumento poblacional que, en ésta época, sufren la población de Sallent de Gállego y la estación invernal de Formigal.

- El contenido de materia orgánica obtenido, tanto en el embalse como en los tributarios, es bajo y no presenta variaciones interanuales destacables. Los valores medios obtenidos en el embalse han sido de 0,8 y 5,6 mg O₂/I, para la DBO₅ y DQO, respectivamente.
- Las aguas embalsadas son poco mineralizadas, obteniéndose un valor para el catión predominante, calcio, de 22,6 mg Ca/l.

Figura 4: Evolución temporal de la concentración de nutrientes. Embalse

Valores medios de Nitrógeno Inorgánico Total Embalse de Lanuza

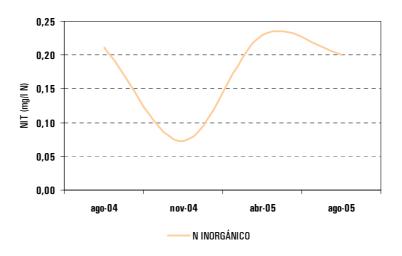
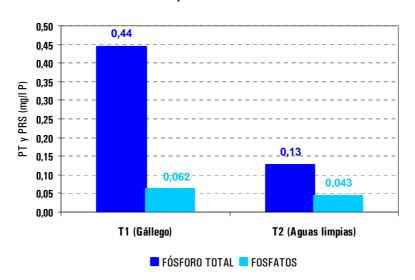
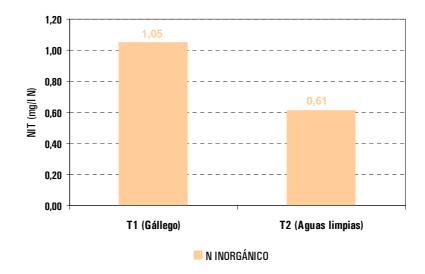
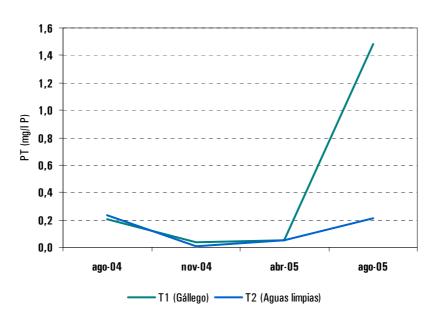



Figura 5: Comparación de la concentración de nutrientes entre tributarios.

Valores medios anuales

Valores medios de Fósforo Total y ortofosfatos Comparación tributarios

Valores medios Nitrógeno Inogánico Total Comparación tributarios

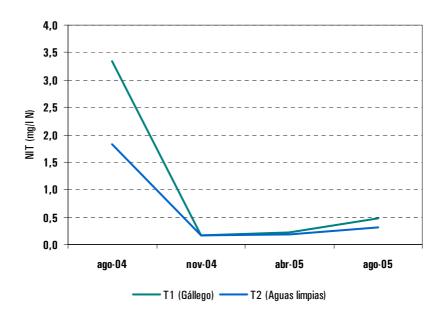


Figura 6: Evolución temporal de nutrientes. Tributarios

Evolución temporal del fósforo total. Tributarios del embalse de Lanuza

Evolución temporal del nitrógeno inorgánico total. Tributarios del embalse de Lanuza

4.3. Productores primarios y concentración de pigmentos fotosintetizadores

Los resultados de los análisis cuantitativos de fitoplancton se presentan en el **Anexo III**. De los resultados obtenidos se desprenden las siguientes apreciaciones.

De la totalidad de 4 análisis realizados se han identificado un total de 46 especies, distribuidas entre los siguientes grupos taxonómicos:

- 19 diatomeas
- 14 clorofíceas
- 6 criptofíceas
- 1 crisofíceas
- 4 dinofíceas
- 2 zigofíceas

El gráfico siguiente recoge los cambios estacionales -climatológicos- de las comunidades fitoplanctónicas del embalse a lo largo del año hidrológico estudiado -2004-2005-. Las 4 especies que aparecen en el gráfico son consideradas las más representativas de este sistema léntico, atendiendo a la densidad algal -cel/ml- que presenten en una determinada estación climatológica.

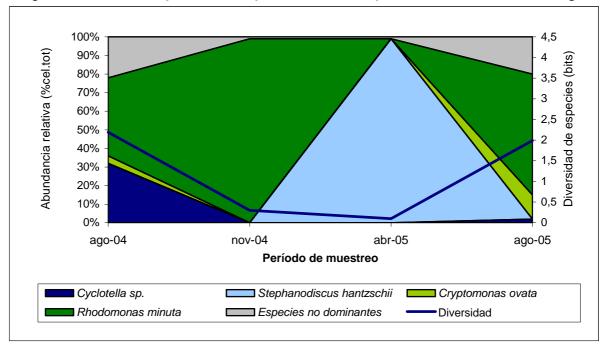


Figura 7: Evolución temporal de las especies dominantes y diversidad de la comunidad algal

La composición y estructura poblacional han mantenido las siguientes pautas temporales:

Durante el primer verano, se registra la mínima densidad anual fitoplanctónica -333 cel/ml- y la mayor parte de la comunidad está compuesta por dos especies, la diatomea *Cyclotella sp.* y la criptofícea *Rhodomonas minuta*. A pesar de identificar un reducido número de especies -11 especies algales- la ausencia de grandes diferencias en la distribución de abundancias determina que el valor del índice de diversidad de Shannon-Weaber sea el máximo durante el periodo de estudio -2,19 bits-.

En invierno la comunidad fitoplanctónica continúa con valores reducidos de densidad – 354 cel/ml-. Destaca el crecimiento de la criptofícea *Rhodomonas minuta* que se establece como dominante representando el 97% de la densidad total.

Durante la época primaveral se produce un fuerte crecimiento de las poblaciones algales hasta registrarse el máximo valor de densidad fitoplanctónica -6.149 cel/ml-. Cualitativamente, la comunidad está dominada por la diatomea *Stephanodiscus hantzschii* cuya población representa el 99% de la comunidad algal del estanque. La abundancia de la criptofícea *Rhodomonas minuta* se reduce drásticamente hasta ser

meramente presencial. Esta situación conlleva la obtención del mínimo valor del índice de diversidad de Shannon-Weaber -0,10 bits-.

En el segundo periodo estival disminuye la densidad algal hasta cuantificarse valores semejantes al periodo estival del año anterior -563 cel/ml-. Las criptofíceas que decrecieron en primavera, vuelven a proliferar, de forma que este periodo representan el 85% de la densidad celular total. La especie más abundante vuelve a ser *Rhodomonas minuta*.

La evolución temporal de la densidad algal, segregada por clases taxonómicas y la biomasa expresada en concentración de clorofila *a*, se representa en el siguiente gráfico:

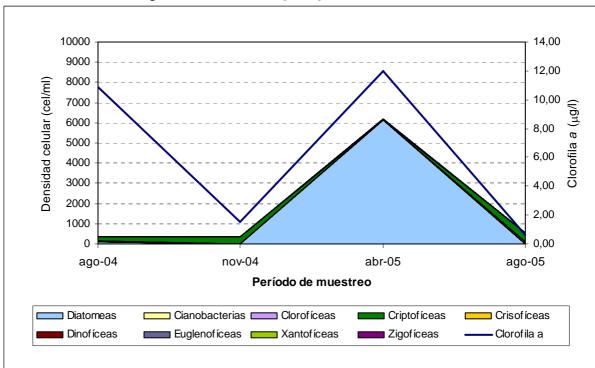


Figura 8: Evolución temporal por clases taxonómicas

En agosto de 2004 se registra un valor muy elevado de biomasa medido como clorofila *a* -10,90 μg/l- para la reducida densidad algal cuantificada -333 cel/ml-. Para confirmar el origen de este desajuste habría que medir el porcentaje de clorofila *a* inactiva, ya que existe la posibilidad de que gran parte de esta clorofila sea inactiva y proceda de una proliferación algal del período anterior. Durante los siguientes periodos de estudio la

correspondencia entre biomasa y densidad algal es buena y se mantienen en valores mesotróficos.

4.3.1. Cualidad bioindicadora

Stephanodiscus hantzschii

Las asociaciones de especies fitoplanctónicas identificadas en el embalse a lo largo del año nos informan de un medio léntico mesotrófico con episodios de eutrofia. La comunidad algal en verano se caracteriza por tener un tamaño poblacional reducido caracterizado por diatomeas céntricas (Cyclotella sp.) y criptofíceas (Rhodomonas minuta), en invierno prolifera Rhodomonas minuta y en primavera hay un pico poblacional protagonizado por la

diatomea céntrica *Stephanodiscus hantzschii*, indicadora de medios con alta carga de nutrientes.

5. DIAGNÓSTICO DEL GRADO TRÓFICO

En función de la variedad de índices que se plasma en el cuadro IV, se puede catalogar al embalse de Lanuza como meso-eutrófico.

Prácticamente la totalidad de los índices contrastados sitúan al embalse en niveles de mesotrofia. Tan sólo teniendo en cuenta el valor la transparencia -parámetro de respuesta-la catalogación se situaría en rangos de eutrofia.

Cuadro IV Catalogación del grado trófico del embalse según los diferentes índices

Indice	Definición criterio	Rango	Period	o 2.004-2.005
			Valor	Grado Trófico
EPA (1976)	PT (ug/l); media anual	<10-MESO-20>	29	<i>EUTRÓFICO</i>
EPA (Weber, 1976)	N° células algales/ml	< 2000-MESO-15000 >	1.850	OLIGOTRÓFICO
EPA (Weber, 1976)	Clorofila (ug/l); máx. fót.	<3-MESO-20>	12,0	<i>MESOTRÓFICO</i>
Lee, Jones & Rast (1978)	Clorofila (ug/l);media anual	< 2,1-3-6,7-10>	6,2	MESOTRÓFICO
Lee, Jones & Rast (1978)	PT (ug/l); media anual	<8-12-28-40>	29	MESO-EUTRÓF.
Lee, Jones & Rast (1978)	SDT (m); media anual	<1,8-2,4-3,8-4,6>	2,1	MESO-EUTRÓF.
Margalef (1983)	N° células algales/ml	5000 (lím. eut.avanmod.)	1.850	E. MODERADA
Margalef (1983)	Clorofila (ug/l); anual fót.	5 (lím. eut.avanmod.)	6,2	E. AVANZADA
Margalef (1983)	PT (ug/l); media anual	15 (lím. eut.avanmod.)	29	E. AVANZADA
Margalef (1983)	NO₃-N (ug/l); media anual	140 (lím. eut.avanmod.)	115	E. MODERADA
Margalef (1983)	SDT (m); media anual	3 (lím. eut.avanmod.)	2,1	E. AVANZADA
OCDE (1980)	Clorofila (ug/l); anual fót.	<1; < 2.5; 2.5 · 8; 8 · 25; > 25	6,2	<i>MESOTRÓFICO</i>
OCDE (1980)	Clorofila (ug/l); máx. anual	< 2.5; < 8;8-25;25-75; > 75	12,0	MESOTRÓFICO
OCDE (1980)	PT (ug/l); media anual	Uol. < 4-10-35-100 > Heu.	29	MESOTRÓFICO
OCDE (1980)	SDT (m); media anual	> 12; > 6;;6-3;3-1.5; < 1.5	2,1	<i>EUTRÓFICO</i>
OCDE (1980)	SDT (m); mínimo anual	>6; > 3;3-1.5;1.5-0.7; < 0.7	0,9	<i>EUTRÓFICO</i>
TSI (Carlson, 1974): DST	TSI=10(6-log2(DST))	Uol. < 20-40-60-80 > Heu.	49	MESOTRÓFICO
TSI (Carlson, 1974): CLA	10(6-log2 7,7(1/Cla^0,68))	Uol. < 20-40-60-80 > Heu.	48	MESOTRÓFICO
TSI (Carlson, 1974): PT	$TSI = 10(6 \cdot \log 2(54, 9/PT))$	Uol. < 20-40-60-80 > Heu.	51	MESOTRÓFICO

6. DEFINICIÓN DEL POTENCIAL ECOLÓGICO

En el apartado 6.1. de la MEMORIA DEL ESTUDIO - **ESTABLECIMIENTO DEL POTENCIAL ECOLÓGICO**- se describe la metodología empleada para clasificar el potencial ecológico.

Tal y como se refleja en el cuadro siguiente, el potencial ecológico del embalse de Lanuza es **BUENO**.

EMBALSE DE LA	NUZA		CLASES DEL POTENCIAL ECOLÓGICO									
Indicadores	Elementos	Parámetros	Óptimo	Bueno	Moderado	Deficiente	Malo	Valor obs.	Valoración del parámetro	Valoración del indicador	IPE	EQR
Biológicos	Composición, abundancia y biomasa de fitoplancton	Densidad algal, media anual (cel/ml)	< 5000	5000-15000	15000-25000	25000-50000	>50000	1.854	5			
-		Biomasa algal, Cla a (µg/l); anual capa fótica	0-1	1-2,5	2,5-8	8,0-25	>25	6,2	3	3,0		
		Cianofíceas pot. tóxicas; máx anual (cel/ml)	0-500	500-2000	2000-20000	20000-100000	> 10 ⁵	0	5			
Físico-Químicos	Transparencia	Disco de Secchi; media anual (m)	>12	12-6	6-3	3-1,5	<1,5	2,1	2		3,0	0,82
	Condiciones de oxigenación	Concentración hipolimnética media anual (mg/l O ₂)	>8	8-6	6-4	4-2	<2	9,8	5	3,3		
	Concentración de nutrientes	Concentración de PT: media anual (µg/l P)	0-4 4-10 10-35		10-35	35-100	>100	29,0	3			
				VALORACIÓN DE CADA CLASE								
			5	4	3	2	1					

	C	CLASES DEL POTENCIAL ECOLÓGICO								
	Óptimo	Bueno	Moderado	Deficiente	Malo					
EQR	1-0,95	0,95-0,80	0,80-0,60	0,60-0,40	0,40-0					

ANEXO I. RESULTADOS FÍSICO QUÍMICOS

EMBALSE: LANUZA (LA) CAMPAÑA: 1 **NIVEL:** COT. MAX: 1284 1272,95 E1 Profundidad: 42 Estación: 19:10 Fecha: 10/08/2004 Hora: Disco Secchi (m): 3,6 Capa fótica (m): 6,1 Prof. Cota Temp рΗ OD OD Cond. Redox T.D.S. °C msnm unid mg/l % sat. μS/cm mV mg/l m. 0 1273 17,81 9,05 9,41 99,10 104 339 68 1 1272 17,74 9,04 9,38 98,60 104 339 68 2 1271 16,85 8,95 9,54 336 66 98,40 102 3 1270 14,64 8,51 9,50 93,50 99 323 64 1269 14,60 4 8,46 9,39 92,30 99 322 64 5 1268 14,21 8,33 9,27 90,40 99 319 64 6 1267 14,03 8,26 9,13 88,70 99 317 64 7 1266 13,83 8,18 8,98 86,80 98 316 64 8 1265 13,71 8,16 8,92 86,10 98 317 64 9 1264 13,57 8,09 99 64 8,82 84,80 315 10 1263 13,50 8,11 8,83 84,80 98 315 64 1262 13,41 8,06 99 8,74 83,80 315 64 11 1261 13,34 12 8,07 8,81 84,10 99 317 64 13 1260 13,28 8,06 8,82 84,30 99 317 64 14 1259 13,23 8,06 8,82 84,20 98 317 64 15 1258 13,20 8,06 8,81 83,70 98 319 64 16 1257 13,15 8,06 8,82 83,90 99 319 64 17 1256 13,06 8,07 8,89 84,40 99 323 64 1255 12,93 8,07 99 64 18 8,89 84,40 324 19 1254 12,82 8,06 8,84 83,60 96 324 62 20 1253 12,77 8,06 8,82 83,30 99 324 64 21 1252 12,73 8,05 8,78 82,90 99 322 64 22 1251 12,63 8,06 8,79 82,70 64 99 324 23 1250 12,54 8,04 100 65 8,77 82,40 324 24 1249 12,43 8,01 8,62 80,90 97 324 63 25 1248 12,35 8,02 8,64 80,70 99 325 64 1247 12,32 8,00 80,80 64 26 8,64 99 325 27 1246 12,20 7,97 8,46 79,00 103 324 67 28 1245 12,03 77,70 7,94 8,36 100 322 65 29 1244 11,92 7,91 8,30 76,90 100 320 65 30 1243 11,88 7,91 8,22 76,10 104 322 68 31 1242 11,71 7,88 8,15 75,10 104 321 68 32 1241 11,43 7,83 7,92 72,60 104 319 68 33 1240 10,73 7,79 71,50 319 72 7,91 110 34 1239 10,15 7,77 7,92 70,40 75 116 320 35 1238 9,03 7,71 7,97 69,00 132 319 86 89 36 1237 8,65 7,70 7,85 67,40 137 318 37 1236 8,19 7,68 7,63 64,90 143 319 93 38 1235 7,95 7,65 7,29 61,60 146 317 95 1234 7,63 39 7,78 7,11 59,60 148 316 96 40 1233 7,63 7,59 6,66 55,80 150 313 98 41 1232 7,60 7,59 6,32 53,20 153 313 99

6,03

50,40

153

313

99

7,59

1231

42

7,56

TRIBUTARIO: Gállego				CAMPAÑA:				
Estaci Fecha	-	LAT1 10/08/2004		Cod. Est.: Hora:		LA1T1 18:09		
Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S
m.	msnm	°C	unid	mg/l	% sat.	μS/cm	mV	mg/l
1	-	18,95	8,96	8,61	92,90	454	317	295

TRIBUTARIO: Aguas Limpias				CAMPAÑA:				
Estació Fecha:	n:	LAT2 10/08/2004				LA1T2 18:15		
Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S
m.	msnm	°C	unid	mg/l	% sat.	μS/cm	mV	mg/l
1	-	10,32	8,34	9,43	83,30	87	255	57

EMBA	ALSE: MAX:	LANUZA 1284	A (LA)		CAMPAÑA: NIVEL:		2 1267,72	
Estac Fecha Disco		(m):	E1 22/11/2004 0,9		Profundidad: Hora: Capa fótica (m):	29 19:10 1,5	
Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S.
m.	msnm	°C	unid	mg/l	% sat.	μS/cm	mV	mg/l
0	1268	5,11	8,08	10,33	81,10	202	172	131
1	1267	4,75	8,02	10,33	80,40	203	170	132
2	1266	4,41	8,00	10,31	79,60	203	170	132
3	1265	4,42	7,97	10,22	78,90	204	169	133
4	1264	4,42	7,96	10,19	78,60	204	169	133
5	1263	4,40	7,95	10,17	78,50	205	169	133
6	1262	4,38	7,95	10,15	78,30	205	170	133
7	1261	4,38	7,94	10,13	78,10	205	170	133
8	1260	4,38	7,94	10,14	78,20	206	170	134
9	1259	4,39	7,94	10,13	78,10	207	171	135
10	1258	4,40	7,94	10,12	78,10	207	171	135
11	1257	4,40	7,94	10,12	78,00	207	171	135
12	1256	4,43	7,95	10,11	78,00	208	172	135
13	1255	4,43	7,94	10,09	77,90	209	172	136
14	1254	4,43	7,95	10,10	78,00	210	173	137
15	1253	4,47	7,95	10,09	78,00	210	173	137
16	1252	4,47	7,95	10,09	78,00	211	173	137
17	1251	4,46	7,94	10,09	77,90	212	173	138
18	1250	4,44	7,95	10,09	77,90	212	174	138
19	1249	4,43	7,94	10,09	77,90	212	174	138
20	1248	4,43	7,95	10,08	77,90	213	175	138
21	1247	4,42	7,94	10,08	77,80	213	175	138
22	1246	4,43	7,95	10,08	77,80	215	175	140
23	1245	4,42	7,94	10,08	77,80	216	175	140
24	1244	4,41	7,95	10,07	77,70	216	176	140
25	1243	4,42	7,95	10,06	77,70	216	176	140
26	1242	4,42	7,94	10,05	77,60	217	175	141
27	1241	4,40	7,95	10,06	77,60	218	176	142
28	1240	4,40	7,94	10,05	77,50	218	176	142
29	1239	4,41	7,95	10,04	77,40	218	177	142

TRIBUTARIO: Gállego				CAMPAÑA:				
Estaci Fecha	-	LAT1 22/11/2004				LA2T1 12:30		
Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S
m.	msnm	°C	unid	mg/l	% sat.	μ S/cm	mV	mg/l
1	-	3,57	8,29	9,77	73,70	394	126	256

TRIBU	TARIO:	Aguas Limpias		CAMPAÑA	:	2		
Estaci	ón:	LAT2		Cod. Est.:		LA2T2		
Fecha:		22/11/2004		Hora:	12:51			
Prof.	Cota	Temp	pН	OD	OD	Cond.	Redox	T.D.S
m.	msnm	°C	unid	mg/l	% sat.	μS/cm	mV	mg/l
1	_	7.25	8,22	7.05	58,40	261	118	170

	ALSE:	LANUZ	A (LA)	CAMPAÑA:			3	
CO1.	MAX:	1284			NIVEL:		1268	
Estac Fecha			E1 07/04/2005		Profundidad: Hora:		39,3 13:15	
	Secchi	(m):	1,05		Capa fótica	(m):	1,8	
		(,-	1,00			,,.	.,-	
Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S.
m.	msnm	°C	unid	mg/l	% sat.	μ S/cm	mV	mg/l
0	1268	6,19	8,04	14,29	115,50	183	194	119
1	1267	6,14	8,05	14,27	115,00	184	195	120
2	1266	6,16	8,06	14,31	115,40	187	196	122
3	1265	6,08	8,03	14,22	114,50	189	196	123
4	1264	5,89	7,99	14,15	113,60	188	195	122
5	1263	5,77	7,92	13,86	110,70	189	193	123
6	1262	5,42	7,90	13,89	110,80	186	190	121
7	1261	5,47	7,87	13,82	109,70	192	190	125
8	1260	5,47	7,86	13,78	109,20	192	189	125
9	1259	5,42	7,86	13,75	108,90	192	190	125
10	1258	5,40	7,85	13,76	108,80	193	190	125
11	1257	5,42	7,84	13,65	108,10	196	190	127
12	1256	5,28	7,81	13,53	106,80	198	190	129
13	1255	4,97	7,79	13,41	104,90	199	189	129
14	1254	4,95	7,76	13,33	104,30	201	189	131
15	1253	4,93	7,75	13,33	104,20	201	189	131
16	1252	4,87	7,75	13,29	103,90	201	189	131
17	1251	4,79	7,73	13,31	103,70	201	189	131
18	1250	4,76	7,73	13,16	102,50	201	190	131
19	1249	4,64	7,73	13,17	102,40	201	190	131
20	1248	4,68	7,73	13,08	101,60	202	190	131
21	1247	4,66	7,72	13,01	101,10	203	190	132
22	1246	4,65	7,71	12,87	100,80	203	190	132
23	1245	4,64	7,71	12,92	100,30	203	190	132
24	1244	4,63	7,70	12,97	100,70	204	190	133
25	1243	4,62	7,70	12,87	99,80	204	190	133
26	1242		7,70	12,81	99,30	205	191	133
27	1241	4,58	7,68	12,79	99,10	205	190	133
28	1240	4,56	7,69	12,76	98,90	205	191	133
29	1239	4,57	7,68	12,72	98,50	205	191	133
30	1238	4,55	7,68	12,67	98,20	205	191	133
31	1237	4,52	7,68	12,62	97,60	206	191	134
32	1236	4,51	7,67	12,56	97,20	206	191	134
33	1235	4,50	7,67	12,52	96,90	206	191	134
34	1234	4,48	7,66	12,45	96,30	206	191	134
35	1233	4,48	7,66	12,46	96,30	206	191	134
36	1232	4,48	7,66	12,56	97,10	206	192	134
37	1231	4,48	7,66	12,53	96,80	207	191	135
38	1230	4,46	7,65	12,52	96,60	207	191	135
39	1229	4,45	7,63	12,39	95,70	208	191	135

TRIBU	TARIO:	Gállego		CAMPAÑ	A:	3		
Estaci Fecha	-	LAT1 07/04/2005		Cod. Est.: Hora:		LA3T1 11:50		
Prof.	Cota	Temp	pН	OD	OD	Cond.	Redox	T.D.S
m.	msnm	°C	unid	mg/l	% sat.	μ S/cm	mV	mg/l
1	-	7,00	8,22	8,78	72,40	306	126	199

Aguas

TRIBU	TARIO:	Limpias		CAMPAÑA	\ :	3		
Estacio Fecha:		LAT2 07/04/2005		Cod. Est.: Hora:		LA3T2 12:00		
Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S
m.	msnm	°C	unid	mg/l	% sat.	μ S/cm	mV	mg/l
1	-	8,15	7,83	10,20	86,80	202	118	131

EMB/		LANUZ	A (LA)	CAMPAÑA:			4	
COT.	MAX:	1284			NIVEL:		1275	
Estac	ión:		E1		Profundidad	l:	39,3	
Fecha			01/08/2005		Hora:		13:15	
Disco	Disco Secchi (m):		2,8	2,8 Capa fótica (m):		(m):	4,8	
Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S.
m.	msnm	°C	unid	mg/l	% sat.	μS/cm	mV	mg/l
0	1275	18,23	8,40	8,14	85,80	137	253	89
1	1274	18,24	7,72	7,92	83,30	136	166	88
2	1273	18,25	7,57	8,26	87,70	137	159	89
3	1272	18,25	7,65	8,29	88,40	137	165	89
4	1271	18,25	7,92	8,36	87,60	137	184	89
5	1270	18,26	8,06	8,12	86,20	137	193	89
6	1269	18,26	8,20	7,88	83,70	137	203	89
7	1268	16,10	8,12	8,44	85,40	133	200	86
8	1267	15,56	7,85	8,19	82,20	132	186	86
9	1266	15,11	7,90	8,01	79,70	131	189	85
10	1265	14,85	7,92	8,47	83,20	132	190	86
11	1264	14,68	7,99	8,32	82,00	132	195	86
12	1263	14,50	8,57	8,50	83,40	132	229	86
13	1262	14,40	8,52	8,29	79,70	132	226	86
14	1261	14,30	8,56	8,11	79,20	133	229	86
15	1260	14,20	8,62	7,98	77,80	132	232	86
16	1259	14,14	8,66	8,11	79,70	132	235	86
17	1258	14,06	8,71	8,06	78,90	133	239	86
18	1257	13,98	8,77	7,43	76,90	133	243	86
19	1256	13,93	8,80	8,13	78,70	134	245	87
20	1255	13,80	8,83	7,76	75,00	134	248	87
21	1254	13,73	8,86	7,93	76,40	134	523	87
22	1253	13,66	8,88	7,81	75,20	135	252	88
23	1252	13,61	8,92	7,94	76,00	135	254	88
24	1251	13,54	8,96	7,66	73,80	136	257	88
25	1250	13,49	8,45	7,69	73,70	136	228	88
26	1249	13,37	8,43	7,46	72,70	137	228	89
27		13,29	8,44	7,28	70,10	137	229	89
28		13,18	8,82	7,71	73,40	138	251	90
29	1246		8,87	7,32	69,30	139	254	90
30	1245	12,71	8,89	7,58	70,70	140	256	91
31	1244		8,94	7,45	70,00	141	260	92
32	1243		8,98	7,05	65,30	146	263	95
33	1242	11,54	8,99	7,14	65,40	150	265	98
34	1241	10,84	9,01	6,85	61,80	156	267	101
35	1240	10,26	9,02	7,19	63,60	164	268	107
36	1239	8,72	9,03	6,79	58,30	175	271	114
37	1238	8,39	9,03	6,03	51,40	178	272	116
38	1237	8,26	9,02	6,21	52,80	178	272	116
39	1236	7,98	9,01	6,09	50,60	180	272	117
40	1235	7,88	9,01	5,50	46,30	181	273	118
41	1234	7,72	9,09	5,70	44,50	182	278	118
42	1233	7,59	9,10	5,02	43,20	183	277	119
43	1232	7,53	9,11	5,46	44,80	184	280	120
44	1231	7,48	9,12	5,46	44,20	185	271	120

TRIBU	TARIO:	Gállego		CAMPAÑA	\ :	4		
Estaci Fecha	-	LAT1 01/08/2005		Cod. Est.: Hora:		LA4T1 17:30		
Prof.	Cota	Temp	рН	OD	OD	Cond.	Redox	T.D.S
m.	msnm	°C	unid	mg/l	% sat.	μS/cm	mV	mg/l
1	-	14,25	8,41	8,25	80,60	304	185	198

Aguas

TRIBU	TARIO:	Limpias		CAMPAÑ	Δ:	4		
Estaci Fecha		LAT2 01/08/2005		Cod. Est.: Hora:		LA4T2 17:45		
Prof.	Cota	Temp	pН	OD	OD	Cond.	Redox	T.D.S
m.	msnm	°C	unid	mg/l	% sat.	μS/cm	mV	mg/l
1	-	11,38	8,33	9,30	85,60	153	181	99

ANEXO II. RESULTADOS QUÍMICOS

EMBALSE:	LANUZA			CÓDIGO:	LA1	
CAMPAÑA:	1			FECHA:	10/08/2004	
COTA MÁXIMA:	1284			NIVEL:	1273	
		C	ÓDIGO DE	L PUNTO L	DE MUESTREO	
PARÁMETRO	UNIDAD	E1S	E1T	E1F	T1	<i>T2</i>
PROFUNDIDAD	m	1	3	41		
COTA	msnm	1272	1270	1232		
SÓLIDOS EN SUSPENSIÓN	mg/l	1,1	0,2	1,0	1,0	0,8
ALCALINIDAD TOTAL	mg CO₃Ca/l	41,5	42,0	62,9	146,5	33,6
DBO ₅	mg O ₂ /I	1,1	0,7	0,8	2,6	3,0
DQO	mg O ₂ /I	3,9	7,8	7,8	7,8	7,8
FÓSFORO TOTAL	mg P/I	0,025	0,005	0,004	0,203	0,237
FOSFATOS	mg PO ₄ ³/l	0,041	0,016	0,012	0,520	0,384
FOSFATOS	mg P/I	0,013	0,005	0,004	0,170	0,125
NITRÓGENO KJELDAHL	mg N/I	0,23	0,34	0,58	0,50	1,74
AMONIO TOTAL	mg NH ₄ /I	0,06	0,13	0,19	0,00	2,24
AMONIO TOTAL	mg N/I	0,04	0,10	0,15	0,00	1,74
NITRÓGENO ORGÁNICO	mg N/I	0,19	0,24	0,43	0,50	0,00
NITRATOS	mg NO₃/I	0,08	0,23	1,13	13,47	0,33
NITRATOS	mg N/I	0,02	0,05	0,26	3,04	0,08
NITRITOS	mg NO ₂ /I	0,012	0,012	0,014	0,983	0,031
NITRITOS	mg N/I	0,004	0,004	0,004	0,299	0,009
N INORGÁNICO	mg N/I	0,07	0,15	0,41	3,34	1,82
CALCIO	mg Ca/l	20,4	19,9	27,6		
MAGNESIO DISUELTO	mg Mg/l	1,0	1,0	2,2		
SODIO	mg Na/l	0,8	0,8	1,4		
POTASIO	mg K/l	0,2	0,2	0,4		
CLORUROS	mg Cl⁻/l	0,5	0,5	0,5		
SULFATOS	mg SO ₄ -2/l	7,1	6,7	6,8		
SULFUROS	mg S ⁻² /I			0,001		
SÍLICE	mg SiO ₂ /I	0,46	0,03	1,42		
CLOROFILA a	<i>μ</i> g/l	10,9				

EMBALSE:	LANUZA			CÓDIGO:	LA2	
CAMPAÑA:	2			FECHA:	22/11/2004	
COTA MÁXIMA:	1284			NIVEL:	1268	
		С	ÓDIGO	DEL PUNTO	DE MUESTRE	EO
PARÁMETRO	UNIDAD	E1S	E1M	E1F	T1	<i>T2</i>
PROFUNDIDAD	m	1	15	29		
COTA	msnm	1267	1253	1239		
SÓLIDOS EN SUSPENSIÓN	mg/l	8,4			17,8	0,5
ALCALINIDAD TOTAL	mg CO₃Ca/I	62,5			104,7	95,6
DBO ₅	mg O ₂ /I	0,8			1,3	0,8
DQO	mg O ₂ /I	4,0			4,0	4,0
FÓSFORO TOTAL	mg P/I	0,018	0,035	0,102	0,036	0,004
FOSFATOS	mg PO ₄ ³ /I	0,049	0,068	0,159	0,049	0,013
FOSFATOS	mg P/I	0,016	0,022	0,052	0,016	0,004
NITRÓGENO KJELDAHL	mg N/I	0,41	0,35	0,55	0,32	0,26
AMONIO TOTAL	mg NH ₄ /I	0,01	0,01	0,02	0,02	0,01
AMONIO TOTAL	mg N/I	0,01	0,01	0,02	0,01	0,01
NITRÓGENO ORGÁNICO	mg N/I	0,40	0,35	0,53	0,30	0,25
NITRATOS	mg NO₃/I	0,42	0,28	0,00	0,62	0,46
NITRATOS	mg N/I	0,09	0,06	0,00	0,14	0,10
NITRITOS	mg NO ₂ /I	0,021	0,026	0,062	0,019	0,001
NITRITOS	mg N/I	0,006	0,008	0,019	0,006	0,000
N INORGÁNICO	mg N/I	0,11	0,08	0,04	0,16	0,11
CLOROFILA a	μg/l	1,5				

EMBALSE:	LANUZA			CÓDIGO:	LA3	
CAMPAÑA:	3			FECHA:	07/04/2005	
COTA MÁXIMA:	1284			NIVEL:	1268	
		С	ÓDIGO	DEL PUNTO	DE MUESTRI	EO
PARÁMETRO	UNIDAD	E1S	E1M	E1F	T1	<i>T2</i>
PROFUNDIDAD	m	1	28	38		
COTA	msnm	1267	1240	1230		
SÓLIDOS EN SUSPENSIÓN	mg/l	6,0			8,2	0,6
ALCALINIDAD TOTAL	mg CO₃Ca/l	63,8			115,1	86,7
DBO ₅	mg O ₂ /I	1,0			1,2	1,1
DQO	mg O ₂ /I	4,0			4,0	4,0
FÓSFORO TOTAL	mg P/I	0,027	0,049	0,047	0,053	0,051
FOSFATOS	mg PO ₄ 3/I	0,082	0,113	0,112	0,130	0,106
FOSFATOS	mg P/I	0,027	0,037	0,037	0,042	0,035
NITRÓGENO KJELDAHL	mg N/I	0,38	0,61	0,58	5,31	0,35
AMONIO TOTAL	mg NH ₄ /I	0,04	0,08	0,02	0,08	0,03
AMONIO TOTAL	mg N/I	0,03	0,06	0,01	0,06	0,02
NITRÓGENO ORGÁNICO	mg N/I	0,35	0,55	0,57	5,25	0,32
NITRATOS	mg NO₃/I	0,78	0,94	0,73	0,63	0,68
NITRATOS	mg N/I	0,18	0,21	0,17	0,14	0,15
NITRITOS	mg NO ₂ /I	0,035	0,030	0,024	0,035	0,010
NITRITOS	mg N/I	0,011	0,009	0,007	0,011	0,003
N INORGÁNICO	mg N/I	0,22	0,29	0,18	0,22	0,18
CLOROFILA a	μg/l	12,0				

EMBALSE:	LANUZA			CÓDIGO:	LA4	
CAMPAÑA:	4			FECHA:	01/08/2005	
COTA MÁXIMA:	1284			NIVEL:	1275	
		С	ÓDIGO D	EL PUNTO	DE MUESTRE)
PARÁMETRO	UNIDAD	E1S	E1M	E1F	T1	T2
PROFUNDIDAD	m	1	22	43		
COTA	msnm	1274	1253	1232		
SÓLIDOS EN SUSPENSIÓN	mg/l	1,5			1306,7	147,0
DBO ₅	mg O ₂ /I	0,5			3,0	0,4
DQO	mg O ₂ /I	8,1			7,9	4,0
FÓSFORO TOTAL	mg P/I	0,016	0,008	0,012	1,482	0,213
FOSFATOS	mg PO ₄ ³ /I	0,032	0,012	0,037	0,057	0,020
FOSFATOS	mg P/I	0,010	0,004	0,012	0,019	0,007
NITRÓGENO KJELDAHL	mg N/I	0,45	0,49	0,45	0,27	0,25
AMONIO TOTAL	mg NH ₄ /I	0,21	0,06	0,05	0,35	0,02
AMONIO TOTAL	mg N/I	0,16	0,04	0,04	0,27	0,02
NITRÓGENO ORGÁNICO	mg N/I	0,29	0,45	0,41	0,00	0,23
NITRATOS	mg NO ₃ /I	0,41	0,67	0,44	0,67	1,27
NITRATOS	mg N/I	0,09	0,15	0,10	0,15	0,29
NITRITOS	mg NO ₂ /I	0,013	0,032	0,016	0,163	0,035
NITRITOS	mg N/I	0,004	0,010	0,005	0,050	0,011
N INORGÁNICO	mg N/I	0,26	0,20	0,14	0,47	0,32
SULFUROS	mg S ⁻² /I			0,000		
CLOROFILA a	μ g/l	0,6				

ANEXO III. RESULTADOS BIOLÓGICOS

EMBALSE:	LANUZA	CÓDIGO: LA1
CAMPAÑA:	1	FECHA: 10/08/2004
COTAMAX:	1284	D. SECCHI: 3,6
NIVEL:	1273	C.FÓTICA: 6,1
PARÁMETRO	UNIDAD	CÓDIGO DEL PUNTO DE MUESTREO
		E1S
PROFUNDIDAD	m	1
COTA	msnm	1272
CLOROFILA a	μ g/l	10,90
Población total	n°cel/ml	333
Diversidad (H)	Bits	2,19
Clase BACILLARIOFICEA	n°cel/ml	108
Grupo CIANOBACTERIA	n°cel/ml	0
Clase CLOROFICEA	n°cel/ml	34
Clase CRIPTOFICEA	n°cel/ml	191
Clase CRISOFICEA	n°cel/ml	0
Clase DINOFICEA	n°cel/ml	0
Clase EUGLENOFICEA	n°cel/ml	0
Clase XANTOFICEA	n°cel/ml	0
Clase ZIGOFICEA	n°cel/ml	0
ESPECIES	TAXÓN	n° cel/ml
Cyclotella sp.	Bacillariofícea	108
Ankistrodesmus convolutus	Clorofícea	8
Ankistrodesmus sp.	Clorofícea	1
Oocystis sp.	Clorofícea	24
Sphaerocystis schroeteri	Clorofícea	1
Cryptomonas erosa	Criptofícea	17
Cryptomonas marssonii	Criptofícea	1
Cryptomonas ovata	Criptofícea	14
Cryptomonas reflexa	Criptofícea	1
Cryptomonas sp.	Criptofícea	17
Rhodomonas minuta	Criptofícea	141

EMBALSE:	LANUZA	CÓDIGO: LA2
CAMPAÑA:	2	FECHA: 22/11/2004
COTAMAX:	1284	D. SECCHI: 0,9
NIVEL:	1268	C.FÓTICA: 1,5
PARÁMETRO	UNIDAD	CÓDIGO DEL PUNTO DE MUESTREO
		E1S
PROFUNDIDAD	m	1
COTA	msnm	1267
CLOROFILA a	μ g/l	1,50
Población total	n°cel/ml	354
Diversidad (H)	Bits	0,30
Clase BACILLARIOFICEA	n°cel/ml	8
Grupo CIANOBACTERIA	n°cel/ml	0
Clase CLOROFICEA	n°cel/ml	1
Clase CRIPTOFICEA	n°cel/ml	344
Clase CRISOFICEA	n°cel/ml	1
Clase DINOFICEA	n°cel/ml	0
Clase EUGLENOFICEA	n°cel/ml	0
Clase XANTOFICEA	n°cel/ml	0
Clase ZIGOFICEA	n°cel/ml	0
ESPECIES	TAXÓN	n° cel/ml
Aulacoseira italica	Bacillariofícea	1
Cyclotella ocellata	Bacillariofícea	5
Navicula sp.	Bacillariofícea	1
Nitzschia acicularis	Bacillariofícea	1
Chlamydomonas sp.	Clorofícea	1
Cryptomonas erosa	Criptofícea	1
Cryptomonas ovata	Criptofícea	1
Rhodomonas minuta	Criptofícea	342
Dinobryon sp.	Crisofícea	1

EMBALSE:	LANUZA	CÓDIGO: LA3
CAMPAÑA:	3	FECHA: 07/04/2005
COTAMAX:	1284	D. SECCHI: 1,1
NIVEL:	1268	C.FÓTICA: 1,8
PARÁMETRO	UNIDAD	CÓDIGO DEL PUNTO DE MUESTREO
		E1S
PROFUNDIDAD	m	1
COTA	msnm	1267
CLOROFILA a	μ g/l	12,00
Población total	n°cel/ml	6.165
Diversidad (H)	Bits	0,10
Clase BACILLARIOFICEA	n°cel/ml	6.131
Grupo CIANOBACTERIA	n°cel/ml	0
Clase CLOROFICEA	n°cel/ml	11
Clase CRIPTOFICEA	n°cel/ml	7
Clase CRISOFICEA	n°cel/ml	0
Clase DINOFICEA	n°cel/ml	16
Clase EUGLENOFICEA	n°cel/ml	0
Clase XANTOFICEA	n°cel/ml	0
Clase ZIGOFICEA	n°cel/ml	0
ESPECIES	TAXÓN	n° cel/ml
Achnanthes sp.	Bacillariofícea	3
Asterionella formosa	Bacillariofícea	6
Diatoma mesodon	Bacillariofícea	1
Diatoma sp.	Bacillariofícea	2
Fragilaria sp.	Bacillariofícea	2
Fragilaria ulna	Bacillariofícea	1
Nitzschia acicularis	Bacillariofícea	2
Nitzschia amphibia	Bacillariofícea	1
Stephanodiscus hantzschii	Bacillariofícea	6.113
Chlamydomonas sp.	Clorofícea	11
Cryptomonas erosa	Criptofícea	1
Cryptomonas marssonii	Criptofícea	1
Rhodomonas minuta	Criptofícea	5
Gymnodinium sp.	Dinofícea	2
Peridinium umbonatum	Dinofícea	14

EMBALSE:	LANUZA	CÓDIGO: LA4
CAMPAÑA:	4	FECHA: 01/08/2005
COTAMAX:	1284	D. SECCHI: 2,8
NIVEL:	1275	C.FÓTICA: 4,8
PARÁMETRO	UNIDAD	CÓDIGO DEL PUNTO DE MUESTREO
		E1S
PROFUNDIDAD	m	1
COTA	msnm	1274
CLOROFILA a	μ g/l	0,60
Población total	n°cel/ml	563
Diversidad (H)	Bits	1,99
Clase BACILLARIOFICEA	n°cel/ml	18
Grupo CIANOBACTERIA	n°cel/ml	0
Clase CLOROFICEA	n°cel/ml	60
Clase CRIPTOFICEA	n°cel/ml	481
Clase CRISOFICEA	n°cel/ml	0
Clase DINOFICEA	n°cel/ml	2
Clase EUGLENOFICEA	n°cel/ml	0
Clase XANTOFICEA	n°cel/ml	0
Clase ZIGOFICEA	n°cel/ml	2
ESPECIES	TAXÓN	n° cel/ml
Cyclotella sp.	Bacillariofícea	12
Cymbella cistula	Bacillariofícea	1
Fragilaria crotonensis	Bacillariofícea	1
Hantzschia amphioxys	Bacillariofícea	1
Navicula cryptotenella	Bacillariofícea	1
Nitzschia sp.	Bacillariofícea	1
Tabellaria fenestrata	Bacillariofícea	1
Chlorococcum sp.	Clorofícea	12
Eudorina elegans	Clorofícea	1
Kirchneriella sp.	Clorofícea	1
Monoraphidium sp.	Clorofícea	1
Oocystis sp.	Clorofícea	1
Pandorina morum	Clorofícea	7
Scenedesmus acuminatus	Clorofícea	1
Scenedesmus sp.	Clorofícea	4
Schroederia setigera	Clorofícea	1
Sphaerocystis sp.	Clorofícea	31
Cryptomonas erosa	Criptofícea	23
Cryptomonas marssonii	Criptofícea	17
Cryptomonas ovata	Criptofícea	76
Rhodomonas minuta	Criptofícea	365
Ceratium hirundinella	Dinofícea	1
Peridinium sp.	Dinofícea	1
Staurastrum sp.	Zigofícea	1
Zygnema sp.	Zigofícea	1

REPORTAJE FOTOGRÁFICO

Vista de la presa desde la estación de muestreo (E1). Verano de 2004 (10/08/2004)

Detalle de la presa. Primavera de 2005 (07/04/2005)

Vista panorámica del embalse desde la estación de muestreo (E1). Verano de 2005 (01/08/2005)

Río Gállego, tributario principal del embalse de Lanuza. Verano de 2004 (10/08/2004)

Río Aguas Limpias, tributario secundario del embalse de Lanuza. Invierno de 2004 (22/11/2004)

APÉNDICE 1: FICHA DESCRIPTIVA DEL EMBALSE

Datos generales de embalse

Fecha actualización: Junio de 2006

EMBALSE: LANUZA CÓDIGO: LA

LOCALIZACIÓN:

Autonomía: Aragón Provincia: Huesca Municipio: Lanuza

Situación en C.H.Ebro

CARACTERÍSTICAS GENERALES DEL EMBALSE:

Tributario principal: Río Gállego Otros tributarios: Aguas Limpias Año de terminación: 1978 Propietario: Estado

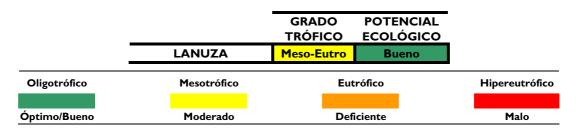
Cuenca a la que pertenece: Gállego Altitud (msnm): 1.283,5

Capacidad total (hm³): 17

Capacidad útil (hm³): -

Longitud máxima (km): 2,8 Perímetro (km): 7
Profundidad máxima (m): 17,5 Profundidad media (m): 69
Usos principales: Hidroeléctrico Otros usos: Riego

Panorámica del embalse (22/11/2004)


SITUACIÓN DE LAS ESTACIONES DE MUESTREO:

N° Plano/s 1:50.000: 145

DIAGNÓSTICO DE LA CALIDAD

CARACTERÍSTICAS FÍSICO-QUÍMICAS: (Datos referidos a la estación de presa -EI-)

12 CAMPAÑA	- M		F.11 6 (1	-	F 1 1	10/00/0004
Iª CAMPAÑA		reador:	Erika González		Fecha de muestreo:	
T ^a superficie (°C):			pH superficie (ud):		ctividad superficie (µS/cm):	
T ^a fondo (°C):			pH fondo (ud):		nductividad fondo (µS/cm):	
T ^a TI (°C):			pH T1 (ud):	,	Conductividad TI (µS/cm):	
T ^a T2 (°C):	10,32		pH T2 (ud):	8,34	Conductividad T2 (µS/cm):	87
			Transparencia	() 50 15	<u>—</u>	
		chi (m)	Capa fotica	(m) -D.S. x 1,7-	<u> </u>	
EI	3,6			6,1		
Termo		Si		rofundidad (m):	3	
Condiciones anó	xicas:	No	Grosor ca	pa anóxica (m):	-	
2ª CAMPAÑA	Muast	reador:			Fecha de muestreo:	22/11/2005
T ^a superficie (°C):		reauor.	pH superficie (ud):	8 08 Conduc	ctividad superficie (µS/cm):	
T ^a fondo (°C):			pH fondo (ud):		nductividad fondo (µS/cm):	
T ^a TI (°C):			pH TI (ud):		Conductividad TI (µS/cm):	
T ^a T2 (°C):			pH T2 (ud):		Conductividad T2 (µS/cm):	
1 12(3)	1,20		Transparencia			
Disco	de Sec	chi (m)		(m) -D.S. x 1,7-		
EI	0.9	.c (<i>)</i>	Capa locica	1,5		
Termo	.,-	No	Pi	rofundidad (m):	-	
Condiciones anó		No		pa anóxica (m):	<u>-</u>	
Condiciones and	Aicus.	110	G 10301 cu	pa anoxica (iii).		
3ª CAMPAÑA	Muest	reador:	Erika González		Fecha de muestreo:	07/04/2005
T ^a superficie (°C):	6,19		pH superficie (ud):		tividad superficie (µS/cm):	183
- 2 4 1 (2.6)						
T ^a fondo (°C):	4,45		pH fondo (ud):		nductividad fondo (µS/cm):	208
Ta TI (°C):	4,45 7,00		pH fondo (ud): pH TI (ud):	8,22	nductividad fondo (µS/cm): Conductividad TI (µS/cm):	
	4,45 7,00		pH fondo (ud): pH TI (ud): pH T2 (ud):	8,22		306
Ta TI (°C):	4,45 7,00		pH fondo (ud): pH TI (ud): pH T2 (ud): Transparencia	8,22 7,83	Conductividad T1 (µS/cm):	306
T ^a T1 (°C): T ^a T2 (°C):	4,45 7,00 8,15	cchi (m)	pH fondo (ud): pH TI (ud): pH T2 (ud): Transparencia	8,22	Conductividad T1 (µS/cm):	306
T ^a T1 (°C): T ^a T2 (°C):	4,45 7,00 8,15	chi (m)	pH fondo (ud): pH TI (ud): pH T2 (ud): Transparencia	8,22 7,83	Conductividad T1 (µS/cm):	306
T ^a T1 (°C): T ^a T2 (°C): Disco	4,45 7,00 8,15 de Sec 1,05	cchi (m)	pH fondo (ud): pH TI (ud): pH T2 (ud): Transparencia Capa fótica	8,22 7,83 (m) -D.S. x 1,7-	Conductividad T1 (µS/cm):	306
Ta TI (°C): Ta T2 (°C): Disco	4,45 7,00 8,15 de Sec 1,05 clina:		pH fondo (ud): pH TI (ud): pH T2 (ud): Transparencia Capa fótica	8,22 7,83 (m) -D.S. x 1,7- 1,8	Conductividad T1 (µS/cm):	306
Ta TI (°C): Ta T2 (°C): Disco EI Termo Condiciones anó	4,45 7,00 8,15 de Sec 1,05 cclina: xicas:	No No	pH fondo (ud): pH TI (ud): pH T2 (ud): Transparencia Capa fótica Pi Grosor ca	8,22 7,83 (m) -D.S. x 1,7- 1,8 rofundidad (m):	Conductividad TI (μS/cm): Conductividad T2 (μS/cm): 	306 202
Ta TI (°C): Ta T2 (°C): Disco EI Termo Condiciones anó	4,45 7,00 8,15 de Sec 1,05 clina: xicas:	No No	pH fondo (ud): pH TI (ud): pH T2 (ud): Transparencia Capa fótica Pi Grosor ca Erika González	8,22 7,83 (m) -D.S. x 1,7- 1,8 rofundidad (m): pa anóxica (m):	Conductividad TI (µS/cm): Conductividad T2 (µS/cm):	306 202 01/08/2005
Ta TI (°C): Ta T2 (°C): Disco EI Termo Condiciones anó 4a CAMPAÑA Ta superficie (°C):	4,45 7,00 8,15 de Sec 1,05 clina: xicas:	No No	pH fondo (ud): pH TI (ud): pH T2 (ud): Transparencia Capa fótica Prosor ca Erika González pH superficie (ud):	8,22 7,83 (m) -D.S. x 1,7- 1,8 rofundidad (m): pa anóxica (m):	Conductividad TI (µS/cm): Conductividad T2 (µS/cm): Fecha de muestreo: ctividad superficie (µS/cm):	306 202 01/08/2005 137
Ta TI (°C): Ta T2 (°C): Disco EI Termo Condiciones anó 4a CAMPAÑA Ta superficie (°C): Ta fondo (°C):	4,45 7,00 8,15 de Sec 1,05 clina: xicas: Muest 18,23 7,48	No No	pH fondo (ud): pH TI (ud): pH T2 (ud): Transparencia Capa fótica Prosor ca Erika González pH superficie (ud): pH fondo (ud):	8,22 7,83 (m) -D.S. x 1,7- 1,8 rofundidad (m): pa anóxica (m): 8,40 Conduc 9,12 Co	Conductividad TI (μS/cm): Conductividad T2 (μS/cm): Fecha de muestreo: ctividad superficie (μS/cm): nductividad fondo (μS/cm):	306 202 01/08/2005 137 185
Ta TI (°C): Ta T2 (°C): Disco EI Termo Condiciones anó 4a CAMPAÑA Ta superficie (°C): Ta fondo (°C): Ta TI (°C):	4,45 7,00 8,15 de Sec 1,05 clina: xicas: Muest 18,23 7,48 14,25	No No	pH fondo (ud): pH TI (ud): pH T2 (ud): Transparencia Capa fótica Pr Grosor ca Erika González pH superficie (ud): pH fondo (ud): pH TI (ud):	8,22 7,83 (m) -D.S. x 1,7- 1,8 rofundidad (m): pa anóxica (m): 8,40 Conduc 9,12 Co 8,41	Fecha de muestreo: ctividad TI (µS/cm): Fecha de muestreo: ctividad superficie (µS/cm): nductividad fondo (µS/cm): Conductividad TI (µS/cm):	01/08/2005 137 185 304
Ta TI (°C): Ta T2 (°C): Disco EI Termo Condiciones anó 4a CAMPAÑA Ta superficie (°C): Ta fondo (°C):	4,45 7,00 8,15 de Sec 1,05 clina: xicas: Muest 18,23 7,48 14,25	No No	pH fondo (ud): pH TI (ud): pH T2 (ud): Transparencia Capa fótica Pr Grosor ca Erika González pH superficie (ud): pH fondo (ud): pH TI (ud): pH T2 (ud):	8,22 7,83 (m) -D.S. x 1,7- 1,8 rofundidad (m): pa anóxica (m): 8,40 Conduc 9,12 Co 8,41	Conductividad TI (μS/cm): Conductividad T2 (μS/cm): Fecha de muestreo: ctividad superficie (μS/cm): nductividad fondo (μS/cm):	01/08/2005 137 185 304
Ta TI (°C): Ta T2 (°C): Disco EI Termo Condiciones anó 4a CAMPAÑA Ta superficie (°C): Ta fondo (°C): Ta TI (°C): Ta T2 (°C):	4,45 7,00 8,15 de Sec 1,05 clina: xicas: Muest 18,23 7,48 14,25 11,38	No No reador:	pH fondo (ud): pH TI (ud): pH T2 (ud): Transparencia Capa fótica Prosor ca Erika González pH superficie (ud): pH fondo (ud): pH TI (ud): pH T2 (ud): Transparencia	8,22 7,83 (m) -D.S. x 1,7- 1,8 rofundidad (m): pa anóxica (m): 8,40 Conduc 9,12 Cos 8,41 8,33	Fecha de muestreo: ctividad TI (µS/cm): Fecha de muestreo: ctividad superficie (µS/cm): nductividad fondo (µS/cm): Conductividad TI (µS/cm):	01/08/2005 137 185 304
Ta TI (°C): Ta T2 (°C): Disco EI Termo Condiciones anó 4a CAMPAÑA Ta superficie (°C): Ta fondo (°C): Ta TI (°C): Ta T2 (°C):	4,45 7,00 8,15 de Sec 1,05 clina: xicas: Muest 18,23 7,48 14,25 11,38	No No	pH fondo (ud): pH TI (ud): pH T2 (ud): Transparencia Capa fótica Prosor ca Erika González pH superficie (ud): pH fondo (ud): pH TI (ud): pH T2 (ud): Transparencia	8,22 7,83 (m) -D.S. x 1,7- 1,8 rofundidad (m): pa anóxica (m): 8,40 Conduc 9,12 Conduct 9,12 Conduct 8,41 8,33 (m) -D.S. x 1,7-	Fecha de muestreo: ctividad TI (µS/cm): Fecha de muestreo: ctividad superficie (µS/cm): nductividad fondo (µS/cm): Conductividad TI (µS/cm):	01/08/2005 137 185 304
Ta TI (°C): Ta T2 (°C): Disco EI Termo Condiciones anó 4a CAMPAÑA Ta superficie (°C): Ta fondo (°C): Ta TI (°C): Ta T2 (°C): Disco EI	4,45 7,00 8,15 de Sec 1,05 clina: xicas: Muest 18,23 7,48 14,25 11,38 de Sec 2,8	No No rreador:	pH fondo (ud): pH TI (ud): pH T2 (ud): Transparencia Capa fótica Prosor ca Erika González pH superficie (ud): pH fondo (ud): pH TI (ud): pH T2 (ud): Transparencia Capa fótica	8,22 7,83 (m) -D.S. x 1,7- 1,8 rofundidad (m): pa anóxica (m): 8,40 Conduc 9,12 Conduc 9,12 Conduc 9,12 Conduc 9,12 Conduc 1,12 Conduc 1,12 Conduc 1,12 Conduc 1,12 Conduc 1,12 Conduc 1,13 Conduc 1,14 Conduc 1,15 Conduc 1,16 Conduc 1,16 Conduc 1,17 Conduc 1,18 Conduc 1	Fecha de muestreo: ctividad TI (µS/cm): Fecha de muestreo: ctividad superficie (µS/cm): nductividad fondo (µS/cm): Conductividad TI (µS/cm):	01/08/2005 137 185 304
Ta TI (°C): Ta T2 (°C): Disco EI Termo Condiciones anó 4a CAMPAÑA Ta superficie (°C): Ta fondo (°C): Ta TI (°C): Ta T2 (°C):	4,45 7,00 8,15 de Sec 1,05 cclina: xicas: Muest 18,23 7,48 14,25 11,38 de Sec 2,8 cclina:	No No reador:	pH fondo (ud): pH TI (ud): pH T2 (ud): Transparencia Capa fótica Prosor ca Erika González pH superficie (ud): pH fondo (ud): pH TI (ud): pH T2 (ud): Transparencia Capa fótica	8,22 7,83 (m) -D.S. x 1,7- 1,8 rofundidad (m): pa anóxica (m): 8,40 Conduc 9,12 Conduct 9,12 Conduct 8,41 8,33 (m) -D.S. x 1,7-	Fecha de muestreo: ctividad TI (µS/cm): Fecha de muestreo: ctividad superficie (µS/cm): nductividad fondo (µS/cm): Conductividad TI (µS/cm):	01/08/2005 137 185 304

CARACTERÍSTICAS QUÍMICAS Y BIOLÓGICAS: (Datos referidos a la estación de presa -E1-)

I ² CAMPAÑA		East	sha da massaat		/2004	
I" CAMPANA			cha de muest DIGO DEL P			PEO.
DADÁMETRO	LINIDAD					
PARÁMETRO	UNIDAD	LAEIS	LAEIT 3	LAEIF 41	LATI	LAT2
PROFUNDIDAD	m D/I	0,025	0,005	0,004	0,203	0,237
FÓSFORO TOTAL FOSFATOS	mg P/I	0,013	0,005	0,004	0,170	0,125
NITRÓGENO KJELDAHL	mg P/I	0,23	0,34	0,58	0,50	1,74
AMONIO TOTAL	mg N/I mg N/I	0,04	0,10	0,15	0,00	1,74
NITRATOS	mg N/I	0,02	0,05	0,26	3,04	0,08
NITRITOS	mg N/I	0,004	0,004	0,004	0,299	0,009
CLOROFILA a	µg/l	10,9	3,551		-,_,	
N° DE CÉLULAS TOTALES	րջ/։ n° cel/ml	333				
CLASE PREDOMINANTE:	Criptofícea	333	N° celula	ıs/ml: 191		
ESPECIE PREDOMINANTE:	Rhodomonas	minuta		ıs/ml: 4		
2ª CAMPAÑA	Fecha de muestreo: 22/11/2004					
PARÁMETRO	UNIDAD	LAEIS	LAEIM	LAEIF	LATI	LAT2
PROFUNDIDAD	m	LALIS	15	29	LAII	-712
FÓSFORO TOTAL	mg P/I	0,018	0,035	0,102	0,036	0,004
FOSFATOS	mg P/I	0,016	0,022	0,052	0,016	0,004
NITRÓGENO KJELDAHL	mg N/I	0,41	0,35	0,55	0.32	0,26
AMONIO TOTAL	mg N/I	0,01	0,01	0,02	0,01	0,01
NITRATOS	mg N/I	0,09	0,06	0,00	0,14	0,10
NITRITOS	mg N/I	0,006	0,008	0,019	0,006	0,000
CLOROFILA a	μg/l	1,5	,	<u> </u>		
N° DE CÉLULAS TOTALES	ո° cel/ml	354				
CLASE PREDOMINANTE:	Criptofícea		N° celula	s/ml: 344		
ESPECIE PREDOMINANTE:	Rhodomonas	minuta	N° celula	s/ml: 342		
3ª CAMPAÑA		Fed	ha de muest	reo: 07/04	/2005	
PARÁMETRO	UNIDAD	LAEIS	LAEIM	LAEIF	LATI	LAT2
PROFUNDIDAD	m	ı	28	38		
FÓSFORO TOTAL	mg P/I	0,027	0,049	0,047	0,053	0,051
FOSFATOS	mg P/I	0,027	0,037	0,037	0,042	0,035
NITRÓGENO KJELDAHL	mg N/I	0,38	0,61	0,58	5,31	0,35
AMONIO TOTAL	mg N/I	0,03	0,06	0,01	0,06	0,02
NITRATOS	mg N/I	0,18	0,21	0,17	0,14	0,15
NITRITOS	mg N/I	0,011	0,009	0,007	0,011	0,003
CLOROFILA a	μg/l	12,0				
N° DE CÉLULAS TOTALES	n° cel/ml	6 165				
CLASE PREDOMINANTE:	Bacillariofíce			N° celulas/n		
ESPECIE PREDOMINANTE:	Stephanodisc	us hantzsch	ii	N° celulas/n	nl: 6 I I 3	
4ª CAMPAÑA		Fed	ha de muest	reo: 01/08	/2005	
PARÁMETRO	UNIDAD	LAEIS	LAEIM	LAEIF	LATI	LAT2
PROFUNDIDAD	m	ı	22	43		
FÓSFORO TOTAL	mg P/I	0,016	0,008	0,012	1,482	0,213
	mg P/I	0,010	0,004	0,012	0,019	0,007
FOSFATOS				0,45	0,27	0,25
NITRÓGENO KJELDAHL	mg N /l	0,45	0,49	-		
	mg N/I mg N/I	0,16	0,04	0,04	0,27	0,02
NITRÓGENO KJELDAHL	•	0,16 0,09	0,04 0,15	0,04 0,10	0,27 0,15	0,02 0,29
NITRÓGENO KJELDAHL AMONIO TOTAL	mg N/I	0,16 0,09 0,004	0,04	0,04	0,27	0,02
NITRÓGENO KJELDAHL AMONIO TOTAL NITRATOS	mg N/I mg N/I	0,16 0,09	0,04 0,15	0,04 0,10	0,27 0,15	0,02 0,29
NITRÓGENO KJELDAHL AMONIO TOTAL NITRATOS NITRITOS	mg N/I mg N/I mg N/I	0,16 0,09 0,004	0,04 0,15 0,010	0,04 0,10 0,005	0,27 0,15	0,02 0,29
NITRÓGENO KJELDAHL AMONIO TOTAL NITRATOS NITRITOS CLOROFILA a	mg N/I mg N/I mg N/I µg/I	0,16 0,09 0,004 0,60 563	0,04 0,15 0,010	0,04 0,10	0,27 0,15	0,02 0,29

ADICIONAL INFORME EMBALSE DE LANUZA 2004-2005

Durante el año 2022 se han revisado los datos del embalse de Lanuza recopilados durante los años 2004 y 2005, en aplicación del Real Decreto 817/2015, de 11 de septiembre, por el que se establecen los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental, a partir de la trasposición de la Directiva Marco del Agua (DMA).

La metodología utilizada ha consistido en obtener del informe de dicho año los datos necesarios para estimar de nuevo el estado trófico y el potencial ecológico y, recalcular el valor correspondiente en cada variable y en el estado final del embalse, utilizando las métricas publicadas en 2015, lo que permite comparar el estado de los embalses en un ciclo interanual de forma homogénea.

En cada apartado considerado se indica la referencia del apartado del informe original al que se refiere este trabajo adicional.

1. ESTADO TRÓFICO

Para evaluar el grado de eutrofización o estado trófico de una masa de agua se aplican e interpretan una serie de indicadores de amplia aceptación. En cada caso, se ha tenido en cuenta el valor de cada indicador en función de las características limnológicas básicas de los embalses. Así, se han podido interpretar las posibles incoherencias entre los diversos índices y parámetros y establecer la catalogación trófica final en función de aquellos que, en cada caso, responden a la eutrofización de las aguas.

Dentro del presente estudio se han considerado los siguientes índices y parámetros:

a) Concentración de nutrientes. Fósforo total (PT)

La concentración de fósforo total en el epilimnion del embalse es un parámetro decisivo en la eutrofización ya que suele ser el factor limitante en el crecimiento y reproducción de las poblaciones algales o producción primaria. De entre los índices conocidos, se ha adoptado en el presente estudio, el utilizado por la Organización para la Cooperación y el Desarrollo Económico (OCDE) resumido en la tabla A1, ya que es

el que mejor refleja el grado trófico real en los casos estudiados y además es el de más amplio uso a nivel mundial y en particular en la Unión Europea (UE), España y la propia Confederación Hidrográfica de lanuza (CHE). Desde 1984 se demostró que los criterios de la OCDE, que relacionan la carga de nutrientes con las respuestas de eutrofización, eran válidos para los embalses españoles.

Tabla A1. Niveles de calidad según la concentración de fósforo total.

Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración PT (µg					
P/L)	0-4	4-10	10-35	35-100	>100

b) Fitoplancton (Clorofila a, densidad algal)

A diferencia del anterior, el fitoplancton es un indicador de respuesta trófica y, por lo tanto, integra todas las variables causales, de modo que está influido por otros condicionantes ambientales además de estarlo por los niveles de nutrientes. Se utilizan dos parámetros como estimadores de la biomasa algal en los índices: concentración de clorofila a en la zona fótica (µg/L) y densidad celular (nº células/ml).

Al contar en este estudio mayoritariamente con sólo una campaña de muestreo, y por tanto no contar con una serie temporal que nos permitiera la detección del máximo anual, se utilizaron las clases de calidad relativas a la media anual (tabla A2). La utilización de los límites de calidad relativos a la media anual de clorofila se basó en el hecho de que los muestreos fueron realizados durante la estación de verano. Según la bibliografía limnológica general, el verano coincidiría con un descenso de la producción primaria motivado por el agotamiento de nutrientes tras el pico de producción típico de finales de primavera. Por ello, la utilización de los límites o rangos relativos al máximo anual resultaría inadecuada.

Para la densidad celular, basamos nuestros límites de estado trófico en la escala logarítmica basada en los estudios limnológicos de Margalef, ya utilizada para incluir más clases de estado trófico en otros estudios (tabla A2). Estos resultados se ajustaban de forma más aproximada a los obtenidos mediante otras métricas estándar de la OCDE como las de P total o clorofila. En el presente estudio, los índices elegidos son los siguientes:

Tabla A2. Niveles de calidad según la clorofila a y la densidad algal del fitoplancton.

Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Clorofila a (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad (cél./ml)	<100	100-1000	1000-10000	10000-100000	>100000

c) Transparencia de la columna de agua. Disco de Secchi (DS)

Por su parte, la transparencia, medida como profundidad de visibilidad del disco de Secchi (media y mínimo anual en m), está también íntimamente relacionada con la biomasa algal, aunque más indirectamente, ya que otros factores como la turbidez debida a sólidos en suspensión, o los fenómenos de dispersión de la luz que se producen en aguas carbonatadas, afectan a esta variable.

Se utilizaron las clases de calidad relativas al mínimo anual de transparencia según criterios OCDE. Se utilizaron en este caso los rangos relativos al mínimo anual (tabla A3) debido a varios factores: por un lado, la transparencia en embalses es generalmente menor que en lagos; por otro lado, en verano se producen resuspensiones de sedimentos como consecuencia de los desembalses para regadío, y por último, la mayoría de los embalses muestreados son de aguas carbonatadas, con lo que la profundidad de Secchi subestimaría también la transparencia.

Tabla A3. Niveles de calidad según la transparencia.

Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Disco Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7

Catalogación trófica final

Se han considerado la totalidad de los índices expuestos, que se especifican en la tabla A4, estableciéndose el estado trófico global de los embalses estudiados según la metodología descrita a continuación, utilizando el valor promedio de los dos muestreos en su caso.

Tabla A4. Resumen de los parámetros indicadores de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración PT (μg	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cél./ml)	<100	100-1000	1000-10000	10000-100000	>100000

Sobre la base de esta propuesta, en la tabla A5 se incluye la catalogación de las diferentes masas de agua por parámetro. Así, para cada uno de los embalses, se asignó un valor numérico (de 1 a 5) según cada clase de estado trófico.

Tabla A5. Valor numérico asignado a cada clase de estado trófico.

ESTADO TRÓFICO	VALORACIÓN
Ultraoligotrófico	1
Oligotrófico	2
Mesotrófico	3
Eutrófico	4
Hipereutrófico	5

La valoración del estado trófico global final se calculó mediante la *media* de los valores anteriores, re-escalada a cinco rangos de estado trófico (es decir, el intervalo 1-5, de 4 unidades, dividido en 5 rangos de 0,8 unidades de amplitud).

2. ESTADO DE LA MASA DE AGUA

El **estado** de una masa de agua es el grado de alteración que presenta respecto a sus condiciones naturales, y viene determinado por el *peor valor* de su estado ecológico y químico.

- El <u>estado ecológico</u> es una expresión de la calidad de la estructura y el funcionamiento de los ecosistemas acuáticos asociados a las aguas superficiales en relación con las condiciones de referencia (es decir, en ausencia de alteraciones). En el caso de los embalses se denomina potencial ecológico en lugar de estado ecológico. Se determina a partir de indicadores de calidad (biológicos y fisicoquímicos).

 El <u>estado químico</u> de las aguas es una expresión de la calidad de las aguas superficiales que refleja el grado de cumplimiento de las normas de calidad ambiental de las sustancias prioritarias y otros contaminantes.

2.1. POTENCIAL ECOLÓGICO

2.1.1. INDICADORES DE CALIDAD BIOLÓGICOS: FITOPLANCTON

Como consecuencia de la aprobación de la IPH (Instrucción de Planificación Hidrológica, Orden ARM/2656/2008), se ha realizado una aproximación al <u>potencial ecológico</u> para el elemento de calidad <u>fitoplancton</u> denominada *propuesta normativa*. En ella se establecen las condiciones de máximo potencial para los siguientes parámetros: clorofila a, biovolumen, Índice de Grupos Algales (IGA) y porcentaje de cianobacterias, en función de la tipología del embalse.

Se debe seguir el procedimiento descrito en el Protocolo MFIT-2013 Versión 2 para el cálculo del RCE de cada uno de los cuatro parámetros:

- Cálculo de Ratio de Calidad Ecológico (RCE)

Cálculo para clorofila a:

RCE= [(1/Chla Observado) / (1/Chla Máximo Potencial Ecológico)]

Cálculo para biovolumen:

RCE= [(1/biovolumen Observado) / (1/ biovolumen Máximo Potencial Ecológico)]

Cálculo para el Índice de Grupos Algales (IGA):

RCE= [(400-IGA Observado) / (400- IGA Máximo Potencial Ecológico)]

Cálculo para el porcentaje de cianobacterias:

RCE= [(100 - % cianobacterias Observado) / (100 - % cianobacterias Máximo Potencial Ecológico)]

1) Concentración de clorofila a

Del conjunto de pigmentos fotosintetizadores de las microalgas de agua dulce, la clorofila *a* se emplea como un indicador básico de biomasa fitoplanctónica. Todos los grupos de microalgas contienen clorofila *a* como pigmento principal, pudiendo llegar a

representar entre el 1 y el 2 % del peso seco total. La clasificación del potencial ecológico de acuerdo con la concentración de clorofila a se indica en la tabla A6.

Tabla A6. Clases de potencial ecológico según el RCE de la concentración de clorofila a.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,211	0,210 - 0,14	0,13 - 0,07	< 0,07
Rango <i>Tipos 7, 8, 9, 10 y 11</i>	> 0,433	0,432 - 0,287	0,286 - 0,143	< 0,143
Rango <i>Tipo 12</i>	> 0,195	0,194 - 0,13	0,12 - 0,065	< 0,065
Rango Tipo 13	> 0,304	0,303 - 0,203	0,202 - 0,101	< 0,101
Valoración de cada clase	2	3	4	5

2) Biovolumen algal

El biovolumen es una medida mucho más precisa de la biomasa algal, por tener en cuenta el tamaño o volumen celular de cada especie, además del número de células. La clasificación del potencial ecológico de acuerdo al biovolumen de fitoplancton se indica en la tabla A7.

Tabla A7. Clases de potencial ecológico según el RCE del biovolumen algal del fitoplancton.

				_
Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,189	0,188 - 0,126	0,125 - 0,063	< 0,063
Rango Tipos 7, 8, 9, 10 y 11	> 0,362	0,361 - 0,24	0,23 - 0,12	< 0,12
Rango Tipo 12	> 0,175	0,174 – 0,117	0,116 - 0,058	< 0,058
Rango Tipo 13	> 0,261	0,260 - 0,174	0,173 - 0,087	< 0,087
Valoración de cada clase	2	3	4	5

3) Índice de grupos algales (IGA)

Se ha aplicado un índice basado en el biovolumen relativo de diferentes grupos algales del fitoplancton, denominado *IGA*, y que viene siendo utilizado por CHE desde 2010.

El índice IGA se expresa:

$$Iga = \frac{1 + 0.1*Cr + Cc + 2*(Dc + Chc) + 3*Vc + 4*Cia}{1 + 2*(D + Chc) + Chnc + Dnc}$$

Siendo,

Cr	Criptófitos	Cia	Cianobacterias
Cc	Crisófitos coloniales	D	Dinoflageladas
Dc	Diatomeas coloniales	Cnc	Crisófitos no coloniales
Chc	Clorococales coloniales	Chnc	Clorococales no coloniales
Vc	Volvocales coloniales	Dnc	Diatomeas no coloniales

En cuanto al *IGA*, se han considerado los rangos de calidad establecidos en la tabla A8.

Tabla A8. Clases de potencial ecológico según el RCE del Índice de Grupos Algales (IGA).

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,974	0,973 - 0,649	0,648 - 0,325	< 0,325
Rango Tipos 7, 8, 9, 10 y 11	> 0,982	0,981 - 0,655	0,654 - 0,327	< 0,327
Rango Tipo 12	> 0,929	0,928 - 0,619	0,618 - 0,31	< 0,31
Rango Tipo 13	> 0,979	0,978 - 0,653	0,652 - 0,326	< 0,326
Valoración de cada clase	2	3	4	5

4) Porcentaje de cianobacterias

El aumento de la densidad relativa de cianobacterias se ha relacionado en numerosas ocasiones con procesos de eutrofización.

Para el cálculo del porcentaje de cianobacterias se ha utilizado el procedimiento descrito en el Protocolo de análisis y cálculo de métricas de fitoplancton en lagos y embalses Versión 2 (MAGRAMA, 2016). Se aplica para el cálculo la siguiente fórmula:

$$\%CIANO = \frac{\text{BVOLcia} - \left[\text{BVOLchr} - \left(\text{BVOLmic} + \text{BVOLwor}\right)\right]}{BVOLtot}$$

Donde: BVOL_{CIA} Biovolumen de cianobacterias totales
BVOL_{CHR} Biovolumen de Chroococcales
BVOL_{MIC} Biovolumen de *Microcystis*BVOL_{WOR} Biovolumen de *Woronichinia*BVOL_{TOT} Biovolumen total de fitoplancton

Los valores de cambio de clases se establecen como se muestran en la tabla A9.

Tabla A9. Clases de potencial ecológico según el RCE del porcentaje de cianobacterias.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
Rango Tipos 1, 2 y 3	> 0,908	0,907 - 0,607	0,606 - 0,303	< 0,303
Rango Tipos 7, 8, 9, 10 y 11	> 0,715	0,714 - 0,48	0,47 - 0,24	< 0,24
Rango Tipo 12	> 0,686	0,685 - 0,457	0,456 - 0,229	< 0,229
Rango Tipo 13	> 0,931	0,930 - 0,621	0,620 - 0,31	< 0,31
Valoración de cada clase	2	3	4	5

Posteriormente, es necesario llevar a cabo la transformación de los valores de RCE obtenidos a una escala numérica equivalente para los cuatro indicadores (RCEtrans). Las ecuaciones varían en función del tipo de embalse.

Tipos 1, 2 y 3

Clor	ofila a		
RCE>0,21	RCE _{trans} = 0,5063 x RCE + 0,4937		
RCE ≤0,21	RCE _{trans} = 2,8571 x RCE		
Biove	olumen		
RCE >0,19	RCE _{trans} = 0,4938 x RCE + 0,5062		
RCE ≤0,19	RCE _{trans} = 3,1579 x RCE		
% Cianobacterias			
RCE >0,91	RCE _{trans} = 4,4444 x RCE - 3,4444		
RCE ≤0,91	RCE _{trans} = 0,6593 x RCE		
Índice de Grupos Algales (IGA)			
RCE >0,9737	RCE _{trans} = 15,234 x RCE - 14,233		
RCE ≤0,9737	RCE _{trans} = 0,6162 x RCE		

Tipos 7, 8, 9, 10 y 11

Clorofila a			
RCE>0,43	RCE _{trans} = 0,7018 x RCE + 0,2982		
RCE ≤0,43	RCE _{trans} = 1,3953 x RCE		
Biovo	lumen		
RCE >0,36	RCE _{trans} = 0,625 x RCE + 0,375		
RCE ≤0,36	RCE _{trans} = 1,6667 x RCE		
	•		
% Ciano	bacterias		
RCE >0,72	RCE _{trans} = 1,4286 x RCE - 0,4286		
RCE ≤0,72	RCE _{trans} = 0,8333 x RCE		
Índice de Grupo	os Algales (IGA)		
RCE >0,9822	RCE _{trans} = 22,533 x RCE - 21,533		
RCF ≤0 9822	RCF _{trans} = 0.6108 x RCF		

Tipos 6 y 12

Clorofila a	
RCE >0,195 RCE _{trans} =0,497x RCE + 0,503	
RCE ≤ 0,195	RCE _{trans} = 3,075 x RCE

Biovolumen	
RCE > 0,175	RCE _{trans} = 0,4851 x RCE + 0,5149
RCE ≤ 0,175	RCE _{trans} = 3,419 x RCE

% Cianobacterias	
RCE > 0,686	RCE _{trans} = 1,2726x - 0,2726
RCE ≤ 0,686	RCE _{trans} = 0,875 x RCE

Índice de Grupos Algales (IGA)		
RCE > 0,929	$RCE_{trans} = 5,6325x - 4,6325$	
RCE ≤ 0,929	RCE _{trans} = 0,6459 x RCE	

Tipo 13

Clorofila a	
RCE > 0,304	RCE _{trans} = 0,575 x RCE + 0,425
RCE ≤ 0,304	RCE _{trans} = 1,9714 x RCE

Biovolumen	
RCE > 0,261	RCE _{trans} = 0,541x RCE + 0,459
RCE ≤ 0,261	RCE _{trans} = 2,3023 x RCE

% Cianobacterias		
R	CE > 0,931	RCE _{trans} = 5,7971 x RCE - 4,7971
R	CE ≤ 0,931	RCE _{trans} = 0,6445 x RCE

Índice de Grupos Algales (IGA)			
RCE > 0,979	RCE _{trans} = 18,995 x RCE - 17,995		
RCE ≤ 0,979	RCE _{trans} = 0,6129 x RCE		

Para la combinación de los distintos indicadores representativos del elemento de calidad fitoplancton se hallará la *media* de los RCE transformados correspondientes a los parámetros "abundancia-biomasa" y "composición". La combinación de los RCE transformados se llevará a cabo primero para los indicadores de clorofila y biovolumen, ambos representativos de la <u>abundancia</u>. La combinación se hará mediante las *medias* de los RCE transformados.

Posteriormente se llevará a cabo la combinación de los indicadores representativos de la <u>composición</u>: porcentaje de cianobacterias y el IGA. La combinación se hará mediante las *medias* de los RCE transformados. Finalmente, para la combinación de los indicadores de composición y abundancia-biomasa se hará la *media aritmética*.

El valor final de la combinación de los RCE transformados se clasificará de acuerdo a la siguiente escala de la tabla A10:

Tabla A10. Ratios de calidad según el índice de potencial ecológico normativo RCEtrans.

Clase de potencial ecológico	Bueno o superior	Moderado	Deficiente	Malo
RCEtrans	> 0,6	0,4-0,6	0,2-0,4	<0,2
Valoración de cada clase	2	3	4	5

Tabla A11. Valores de referencia propios del tipo (VR_t) y límites de cambio de clase de potencial ecológico (B+/M, Bueno o superior-Moderado; M/D, Moderado-Deficiente; D/M, Deficiente-Malo) de los indicadores de los elementos de calidad de embalses (*RD 817/2015*). Se han incluido sólo los tipos de embalses presentes en el ESTUDIO.

Tipo	Elemento	Parámetro	Indicador	VR _t	B+/M (RCE)	M/D (RCE)	D/M (RCE)
			Clorofila a mg/m ³	2,00	0,211	0,14	0,07
		Biomasa	Biovolumen mm³/L	0,36	0,189	0,126	0,063
Tipo 1	Fitoplancton		Índice de Catalán (IGA)	0,10	0,974	0,649	0,325
·	·	Composición	Porcentaje de cianobacterias	0,00	0,908	0,607	0,303
			Clorofila a mg/m ³	2,60	0,433	0,287	0,143
		Biomasa	Biovolumen mm ³ /L	0,76	0,362	0.24	0,12
Tipo 7	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		D:	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
		Biomasa	Biovolumen mm³/L	0,76	0,362	0,24	0,12
Tipo 9	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		D:	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
		Biomasa	Biovolumen mm³/L	0,76	0,362	0,24	0,12
Tipo 10	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		D'	Clorofila a mg/m3	2,60	0,433	0,287	0,143
		Biomasa	Biovolumen mm³/L	0,76	0,362	0,24	0,12
Tipo 11	Fitoplancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		D:	Clorofila a mg/m3	2,40	0,195	0,13	0,065
		Biomasa	Biovolumen mm³/L	0,63	0,175	0,117	0,058
Tipo 12	Fitoplancton		Índice de Catalán (IGA)	1,50	0,929	0,619	0,31
		Composición	Porcentaje de cianobacterias	0,10	0,686	0,457	0,229
		Diaman	Clorofila a mg/m3	2,10	0,304	0,203	0,101
		Biomasa	Biovolumen mm³/L	0,43	0,261	0,174	0,087
Tipo 13	Fitoplancton		Índice de Catalán (IGA)	1,10	0,979	0,653	0,326
		Composición	Porcentaje de cianobacterias	0,00	0,931	0,621	0,31

2.1.2. INDICADORES DE CALIDAD FISICOQUÍMICOS

Todavía la normativa no ha desarrollado qué indicadores fisicoquímicos se emplean en embalses, pero por similitud con los que se recogen para lagos (Real Decreto 817/2015) se utilizan los siguientes:

1) Transparencia

La transparencia es un elemento válido para evaluar el grado trófico del embalse; tiene alta relación con la productividad biológica; y además tiene rangos establecidos fiables y de utilidad para el establecimiento de los límites de clase del potencial ecológico. Se ha evaluado a través de la profundidad de visión del disco de Secchi (DS), considerando su valor para la obtención de las distintas clases de potencial (tabla A12).

Tabla A12. Clases de potencial ecológico según la profundidad de visión del Disco de Secchi.

Clase de potencial ecológico	Muy Bueno	Bueno	Moderado
Disco de Secchi (DS, m)	> 6	6 - 3	< 3
Valoración de cada clase	1	2	3

2) Condiciones de oxigenación

Representa un parámetro secundario de la respuesta trófica que viene a indicar la capacidad del sistema para asimilar la materia orgánica autóctona, generada por el propio sistema a través de los productores primarios en la capa fótica, y la materia orgánica alóctona, es decir, aquella que procede de fuentes externas al sistema, como la procedente de focos de contaminación puntuales o difusos.

Se ha evaluado estimando la reserva media de oxígeno hipolimnético en el periodo de muestreo, correspondiente al periodo de estratificación. En el caso de embalses no estratificados se consideró la media de oxígeno en toda la columna de agua. Las clases consideradas han sido las correspondientes a la concentración de oxígeno en la columna de agua; parámetro vital para la vida piscícola. En la tabla A13 se resumen los límites establecidos.

Tabla A13. Clases de potencial ecológico según la concentración de oxígeno disuelto en el hipolimnion o en toda la columna de agua, cuando el embalse no está estratificado.

Clase de potencial ecológico	Muy Bueno	Bueno	Moderado
Concentración hipolimnética (mg/L O ₂)	> 8	8 - 6	< 6
Valoración de cada clase	1	2	3

3) Concentración de nutrientes

En este caso se ha seleccionado el fósforo total (PT), ya que su presencia a determinadas concentraciones en un embalse acarrea procesos de eutrofización, pues en la mayoría de los casos es el principal elemento limitante para el crecimiento de las algas.

Se ha empleado el resultado obtenido en la muestra integrada, considerando los criterios de la OCDE especificados en la tabla A14 (OCDE, 1982) adaptado a los intervalos de calidad del RD 817/2015.

Tabla A14. Clases de potencial ecológico según la concentración de fósforo total.

Clase de potencial ecológico	Muy Bueno	Bueno	Moderado
Concentración de PT (µg P/L)	0 - 4	4 -10	> 10
Valoración de cada clase	1	2	3

Si se toman varios datos anuales, se hace la *mediana* de los valores anuales.

Posteriormente se elige el *peor valor* de los tres indicadores (transparencia, condiciones de oxigenación y fósforo total).

4) Sustancias preferentes y contaminantes específicos de cuenca

Dentro de los indicadores fisicoquímicos también se tienen en cuenta las **sustancias preferentes y contaminantes específicos de cuenca.** El valor medio de los datos anuales se revisa para ver si *cumple* o no con la Norma de Calidad Ambiental (NCA) del Anexo V del RD 817/2015. Si incumple supone asignarle para los indicadores fisicoquímicos la categoría de moderado.

Tabla A15. Clases de potencial ecológico para sustancias preferentes y contaminantes específicos de cuenca.

Clase de potencial ecológico	Muy Bueno	Moderado
Sustancias preferentes y contaminantes específicos de cuenca	Cumple NCA	No cumple NCA
Valoración de cada clase	2	3

El <u>potencial ecológico</u> resulta del *peor valor* entre los indicadores biológicos y fisicoquímicos.

Tabla A16. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico
Bueno o superior	Muy bueno	Bueno o superior
Bueno o superior	Bueno	Bueno o superior
Bueno o superior	Moderado	Moderado
Moderado		Moderado
Deficiente	Indistinto	Deficiente
Malo		Malo

2.2. ESTADO QUÍMICO

El <u>estado químico</u> es "no bueno" cuando hay algún incumplimiento de la Norma de Calidad Ambiental, bien sea como media anual (NCA_MA), como máximo admisible (NCA_CMA) o en la biota (NCA_biota) para las **sustancias prioritarias y otros contaminantes**. Las NCA se recogen en el *Anexo IV del RD 817/2015*.

Tabla A17. Clases de estado químico para sustancias prioritarias y otros contaminantes.

Clase de estado químico	Bueno	No alcanza el buen estado
Sustancias prioritarias y otros contaminantes	Cumple NCA	No cumple NCA
Valoración de cada clase	2	3

2.3. ESTADO

El <u>estado</u> de la masa de agua es el *peor valor* entre su potencial ecológico y su estado químico.

Tabla A18. Determinación del estado.

Estado	Estado Químico		
Potencial Ecológico	Bueno	No alcanza el buen estado	
Bueno o superior	Bueno		
Moderado		Inferior a bueno	
Deficiente	Inferior a bueno		
Malo			

DIAGNÓSTICO DEL ESTADO TRÓFICO DEL EMBALSE DE LANUZA

Se han considerado los indicadores especificados en la tabla A19 para los valores medidos en el embalse, estableciéndose el estado trófico global del embalse según la metodología descrita.

Tabla A19. Parámetros indicadores y rangos de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración P (µg P /L)	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L)	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cél./ml)	<100	100-1000	1000-10000	10000-100000	>100000
VALOR PROMEDIO	< 1,8	1,8 – 2,6	2,6 - 3,4	3,4 – 4,2	> 4,2

En la tabla A20a se incluye el estado trófico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según la valoración de este estado trófico final para la campaña de muestreo de 2004.

Tabla A20a. Diagnóstico del estado trófico del embalse de Lanuza 2004.

INDICADOR	VALOR	ESTADO TRÓFICO
CONCENTRACIÓN P TOTAL	24,00	Mesotrófico
DISCO SECCHI	3,60	Oligotrófico
CLOROFILA a	10,90	Eutrófico
DENSIDAD ALGAL	333	Oligotrófico
ESTADO TRÓFICO FINAL	2,75	MESOTRÓFICO

Atendiendo a los criterios seleccionados, la concentración de P total ha clasificado el embalse como mesotrófico; la transparencia como oligotrófico; la concentración de clorofila *a* como eutrófico y la densidad algal como oligotrófico. Combinando todos los indicadores, el estado trófico final para el embalse de Lanuza en 2004 ha resultado ser **MESOTRÓFICO**.

En la tabla A20b se incluye el estado trófico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según la valoración de este estado trófico final para la campaña de muestreo de 2005.

Tabla A20b. Diagnóstico del estado trófico del embalse de Lanuza 2005.

INDICADOR	VALOR	ESTADO TRÓFICO
CONCENTRACIÓN P TOTAL	4,00	Ultraoligotrófico
DISCO SECCHI	2,80	Mesotrófico
CLOROFILA a	0,60	Ultraoligotrófico
DENSIDAD ALGAL	563	Oligotrófico
ESTADO TRÓFICO FINAL	1,75	ULTRAOLIGOTRÓFICO

Atendiendo a los criterios seleccionados, la concentración de P total ha clasificado el embalse como ultraoligotrófico; la transparencia como mesotrófico; la concentración de clorofila *a* como ultraoligotrófico y la densidad algal como oligotrófico. Combinando todos los indicadores, el estado trófico final para el embalse de Lanuza en 2005 ha resultado ser **ULTRAOLIGOTRÓFICO**.

DIAGNÓSTICO DEL ESTADO FINAL DEL EMBALSE DE LANUZA

En la mayoría de los casos en lugar del estado de la masa, sólo se puede establecer el potencial ecológico (además sin tener en cuenta la presencia de sustancias preferentes y contaminantes específicos de cuenca, para los indicadores fisicoquímicos). Tampoco se han estudiado las sustancias prioritarias y otros contaminantes que permitan determinar el estado químico, por eso se diagnostica la masa con el **potencial ecológico**.

Se han considerado los indicadores, los valores de referencia y los límites de clase B+/M (Bueno o superior/Moderado), M/D (Moderado/Deficiente) y D/M (Deficiente/Malo), así como sus ratios de calidad ecológica (RCE), especificados en las tablas A21 y A22.

Tabla A21. Parámetros, rangos del RCE y valores para la determinación del potencial ecológico normativo.

			RANGOS DEL RCE					
Indicador	Elementos	Parámetros	Bueno o superior		Moderado	Deficiente	Malo	
	Fitoplancton	Clorofila a (µg/L)	≥ 0,433		0,432 - 0,287	0,286 - 0,143	< 0,143	
Biológico		Biovolumen algal (mm³/L)	≥ 0,362		0,362 0,361 - 0,24		< 0,12	
		Índice de Catalán (IGA)	≥ 0,982		0,981 – 0,655	0,654 – 0,327	< 0,327	
		Porcentaje de cianobacterias	≥ 0,715		0,714 - 0,48	0,47 - 0,24	< 0,24	
			Bueno o superior		Moderado	Deficiente	Malo	
IND	INDICADOR BIOLÓGICO			> 0,6		0,2 - 0,4	< 0,2	
	RANGOS DE VALORES							
Indicador	Elementos	Parámetros	Muy bueno	Bueno	Moderado	Deficiente	Malo	
	Transparencia	Disco de Secchi (m)	> 6	3 - 6	1,5 - 3	0,7 - 1,5	< 0,7	
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	> 8	8 - 6	6 - 4	4 - 2	< 2	
	Nutrientes	Concentración de PT (µg P/L)	0 - 4	4 - 10	10 - 35	35 - 100	> 100	
			Muy bueno	Bueno	Moderado			
INDICADOR FISICOQUÍMICO			< 1,6	1,6 – 2,4	> 2,4			

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico normativo sigue el esquema de decisiones indicado en la tabla A22.

Tabla A22. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico (PE)
Bueno o superior	Muy bueno	Bueno o superior
Bueno o superior	Bueno	Bueno o superior
Bueno o superior	Moderado	Moderado
Moderado		Moderado
Deficiente	Indistinto	Deficiente
Malo		Malo

En la tabla A23a se incluye el potencial indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según el potencial ecológico, tras pasar el filtro del indicador fisicoquímico para el año 2004.

Tabla A23a. Diagnóstico del potencial ecológico del embalse de Lanuza 2004.

Indicador	Elementos	Parámetro	Indicador	Valor	RCE	RCET	PE
Biológico	Fitoplanctor	Biomasa	Clorofila a (µg/L)	10,90	0,18	0,52	Moderado
INDICADOR BIOLÓGICO				2			MODERADO
Indica	ador	Elementos	Indicador	Valor		PE	
		Transparencia	Disco de Secchi (m)	3,60		Bueno	
Fisicoquímico		Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	9,37		Muy Bueno	
		Nutrientes	Concentración de PT (µg P/L)	24,00		Moderado	
INDICADOR FISICOQUÍMICO				3		MODERADO	
POTENCIAL ECOLÓGICO				MODERADO			
ESTADO FINAL				INFERIOR A BUENO			

De acuerdo con los resultados obtenidos, el Estado Final del embalse de Lanuza para el año 2004 es de nivel 3, **INFERIOR A BUENO**.

En la tabla A23b se incluye el potencial indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según el potencial ecológico, tras pasar el filtro del indicador fisicoquímico para el año 2005.

Tabla A23b. Diagnóstico del potencial ecológico del embalse de Lanuza 2005.

Indicador	Elementos	Parámetro	Indicador	Valor RCE RCET		PE			
Biológico	Fitoplancton	Biomasa	Clorofila a (µg/L)	0,60 3,33 2,64		Bueno o Superior			
INDICADOR BIOLÓGICO				2			BUENO O SUPERIOR		
Indica	ador	Elementos	Indicador		Valor		Valor PE		PE
		ransparencia	Disco de Secchi (m)	2,80		Moderado			
Fisicoquímico		Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	7,26		Bueno			
		lutrientes	Concentración de PT (µg P/L)	4,00		Muy Bueno			
INDICADOR FISICOQUÍMICO				3			MODERADO		
POTENCIAL ECOLÓGICO				MODERADO					
ESTADO FINAL				INFERIOR A BUENO					

De acuerdo con los resultados obtenidos, el Estado Final del embalse de Lanuza para el año 2005 es de nivel 3, **INFERIOR A BUENO**.