SONDEO HIDROACÚSTICO EN EMBALSES DE LA DEMARCACIÓN HIDROGRÁFICA DEL EBRO: IBÓN RECRECIDO DE IP

ÁREA DE CALIDAD DE AGUAS CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

SONDEO HIDROACÚSTICO EN EMBALSE DE LA DEMARCACIÓN HIDROGRÁFICA DEL EBRO: IBÓN RECRECIDO DE IP

PROMOTOR:

CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

SERVICIO:

ÁREA DE CALIDAD DE AGUAS

DIRECCIÓN DEL PROYECTO:

María José Rodríguez Pérez

EMPRESA CONSULTORA:

ECOHYDROS S.L.

EQUIPO DE TRABAJO:

Agustín P. Monteoliva, Alberto Criado, María Fernández, Iván González y Omar Monteoliva

PRESUPUESTO DE LA ADJUDICACIÓN:

114.425,25 Euros

CONTENIDO:

MEMORIA/ANEJOS/CARTOGRAFÍA/CD

AÑO DE EJECUCIÓN:

2022

FECHA ENTREGA:

NOVIEMBRE 2022

REFERENCIA IMÁGENES PORTADA:

Superior izquierda: Embarcación con material de pesca Superior derecha: Técnico realizando electropesca desde orilla

Inferior izquierda: Embarcación de hidroacústica en el Ibón recrecido de Ip

Inferior derecha: Ejemplares de piscardo (Phoxinus bigerri)

CITA DEL DOCUMENTO: Confederación Hidrográfica del Ebro (2022) Sondeo hidroacústico en embalses de la Demarcación

Hidrográfica del Ebro: Ibón recrecido de Ip 61 págs. Disponible en PDF en la web: http://www.chebro.es

El presente informe pertenece al Dominio Público en cuanto a los Derechos Patrimoniales recogidos por el Convenio de Berna. Sin embargo, se reconocen los Derechos de los Autores y de la Confederación Hidrográfica del Ebro a preservar la integridad del mismo, las alteraciones o la realización de derivados sin la preceptiva autorización administrativa con fines comerciales, o la cita de la fuente original en cuanto a la infracción por plagio o colusión. A los efectos prevenidos, las autorizaciones para uso no científico del contenido deberán solicitarse a la Confederación Hidrográfica del Ebro.

SONDEO HIDROACÚSTICO EN EMBALSES DE LA DEMARCACIÓN HIDROGRÁFICA DEL EBRO: IBÓN RECRECIDO DE IP. AÑO 2022

El objeto de este informe es la evaluación de la abundancia y biomasa de la biocenosis de peces del lbón recrecido de Ip. Para ello, en junio 2022 se realizó un muestreo cuantitativo de los peces en dicho embalse mediante una combinación de técnicas: Muestreo directo mediante redes agalleras científicas (CEN-EN 14.757/2006) y pesca eléctrica desde embarcación, y sondeo indirecto mediante técnicas hidroacústicas de calidad científica.

Adicionalmente, se realizó un muestreo y análisis de eDNA, para detectar la presencia de dos especies que podrían estar en números tan bajos que resultaran indetectables con las técnicas de pesca directa. Se trata de la trucha común (Salmo trutta fario) y la anguila europea (Anguilla anguilla), dos especies autóctonas en declive en los embalses de esta demarcación.

Los resultados establecen que la asociación está claramente dominada en densidad por el piscardo (Phoxinus bigerri), que representa el 93%. En lo que respecta a la biomasa, es la trucha común (Salmo trutta fario) la especie dominante (95%).

La densidad estimada fue de $1,83 \pm 0,29$ ind/dam³ y la biomasa de $1,35 \pm 0,22$ g/m², es decir, unos 14 kg/ha, que pueden considerarse valores bajos de biomasa. Sin embargo, en este tipo de masa de agua la mera presencia de peces se considera una alteración.

Los análisis realizados mediante la técnica de mayor sensibilidad conocida (eDNA), corroboran las capturas de los muestreos: presencia de trucha común y ausencia de anguila europea.

Se ha generado además una batimetría del embalse que aporta nueva información sobre su morfología.

HYDROACOUSTIC SURVEY IN RESERVOIRS OF THE EBRO RIVER BASIN DISTRICT: REGROWNED IBON OF IP. YEAR 2022

The purpose of this report is to assess the abundance and biomass of the fish biocenosis of the enlarged lbón recrecido de lp. For this purpose, in June 2022 a quantitative sampling of the fish in this reservoir was carried out using a combination of techniques: direct sampling using scientific gill nets (CEN-EN 14.757/2006) and electric fishing from a boat, and indirect sampling using scientific quality hydroacoustic techniques.

In addition, eDNA sampling and analysis was carried out to detect the presence of two species that could be present in such low numbers that they would be undetectable with direct fishing techniques. These are the brown trout (Salmo trutta fario) and the European eel (Anguilla anguilla), two native species in decline in the reservoirs of this area.

The results establish that the association is clearly dominated in density by the Adour minow (Phoxinus bigerri), which represents 93%. In terms of biomass, the brown trout (Salmo trutta fario) is the dominant species (95%).

The estimated density was 1.83 ± 0.29 ind/dam³ and the biomass was 1.35 ± 0.22 g/m², i.e. about 14 kg/ha, which can be considered low biomass values. However, in this type of water body the mere presence of fish is considered a disturbance.

The analyses carried out using the most sensitive technique known (eDNA), corroborate the catches of the samplings: presence of brown trout and absence of European eel.

A bathymetry of the reservoir has also been generated, providing new information on its morphology.

ÍNDICE DE CONTENIDOS

1.	INT	ROD	UCCIÓN Y ANTECEDENTES	11
	1.1.	PRE	STACIONES DE LAS TÉCNICAS APLICADAS	12
	1.2.	INTE	ERÉS DEL ESTUDIO CUANTITATIVO DE LA FAUNA ÍCTICA EN MASAS DE AGUA NO VADEABLES	12
2.	ÁM	віто	DE ESTUDIO	14
	2.1.	SITU	JACIÓN	14
	2.2.	CAF	RACTERIZACIÓN MORFOLÓGICA	15
	2.3.	RÉC	GIMEN HIDROLÓGICO	17
	2.4.	CAF	RACTERIZACIÓN FISICOQUÍMICA DEL EMBALSE. PERFILES VERTICALES	18
	2.5.	Poi	ENCIAL ECOLÓGICO Y ESTADO TRÓFICO	20
3.	ME	TOD	DLOGÍA	21
	3.1.	Dis	EÑO DEL MUESTREO	22
	3.2.	Mui	ESTREOS REMOTOS: HIDROACÚSTICA	22
	3.2.	.1.	Prospección hidroacústica	22
	3.2.	2.	Procesado de datos acústicos	23
	3.3.	Mui	ESTREOS DIRECTOS DE PESCA	24
	3.3.		Redes agalleras multipaño	
	3.3.	2.	Pesca eléctrica desde embarcación	
	3.4.	INTE	ERPOLACIÓN ESPACIAL Y ESTIMACIONES GLOBALES	27
	3.5.	EVA	LUACIÓN SEGÚN EL ÍNDICE BIÓTICO QFBI	28
	3.6.	DET	ECCIÓN DE TRUCHA COMÚN Y ANGUILA EUROPEA MEDIANTE ADN AMBIENTAL	30
	3.6.	.1.	Muestreo de ADN ambiental (eDNA)	30
	3.6.	2.	Obtención de ADN ambiental de trucha común y de anguila en muestras de agua	31
	3.6.	.3.	Detección específica de trucha común	31
	3.6.	4.	Detección específica de anguila europea	
	3.6.	5.	Estimaciones de biomasa	
4.	RES	SULT	ADOS	33
	11	Daz		22

4.2.	Soi	NDEO HIDROACÚSTICO: DENSIDADES	36
4	.2.1.	Distribución y estimación de la densidad de peces	38
4	.2.2.	Comparativa con otros embalses de la cuenca del Ebro	40
4.3.	Mu	ESTREOS DIRECTOS: COMPOSICIÓN Y BIOMASA ESPECÍFICA	42
4	.3.1.	Especies presentes en el embalse	<i>4</i> 3
4	.3.2.	Composición y distribución de especies	43
4.4.	Bio	MASA	46
4	.4.1.	Distribución y estimación de la biomasa de peces	46
4	.4.2.	Comparativa con otros embalses de la cuenca del Ebro	49
4.5.	DEI	NSIDAD Y BIOMASA POR ESPECIES	51
4.6.	Mu	ESTREOS INDIRECTOS: ADN AMBIENTAL	52
4	.6.1.	Muestras ambientales de agua	52
4	.6.2.	Detección de trucha común mediante qPCR y estimaciones de biomasa	52
4	.6.3.	Detección de anguila europea mediante qPCR y estimaciones de biomasa	53
5. V	ALOR	ACIÓN SEGÚN EL ÍNDICE QFBI	54
6. C	ONCL	USIONES	56
7. G	LOSA	RIO Y ACRÓNIMOS	58
8. B	IBLIO	GRAFÍA	60

ÍNDICE ANEXOS

- Anexo 1. Especies presentes
- Anexo 2. Resultados de las pescas
- Anexo 3. Celdas del muestreo hidroacústico (en versión digital)
- Anexo 4. Boletines de ensayo eDNA

ÍNDICE DE TABLAS

Tabla 1. Estratos considerados en el Ibón recrecido de Ip	17
Tabla 2. Descripción de las redes de muestreo empleadas	25
Tabla 3. Métricas y coeficientes para el cálculo del QFBI	29
Tabla 4. Valores de corte del QFBI empleados para la clasificación del potencial ecológico	29
Tabla 5. Valores de diferentes índices morfométricos en el Ibón recrecido de Ip a partir del nuevo MD	T. 34
Tabla 6. Densidad de peces (ind/dam³) por estratos, estimada mediante acústica	38
Tabla 7. Especies presentes en el embalse	43
Tabla 8. Ejemplos de las redes utilizadas durante los muestreos directos en Ibón recrecido de Ip	44
Tabla 9. Resultados de las pescas con red por especies	44
Tabla 10. Recorridos de pesca eléctrica realizados durante los muestreos directos del Ibón recrecido	
Tabla 11. Resultados de la pesca eléctrica por especies	
Tabla 12. Biomasa de peces por estratos (g/m²) estimada mediante acústica	47
Tabla 13. Densidades (ind/dam³) y biomasas (g/m²) por especie	51
Tabla 14. Concentración de Salmo trutta en las muestras del embalse Ibón recrecido de Ip	52
Tabla 15. Resultados del QFBI obtenidos para el embalse de lp	54

ÍNDICE DE FIGURAS

Figura 1. Situación del Ibón recrecido de Ip	14
Figura 2. Perfil de la presa del Ibón recrecido de Ip sobre modelo digital del terreno /Fuente: Elaboració propia a partir de datos originales.	
Figura 3. Batimetría del Ibón recrecido de Ip	16
Figura 4. Evolución del volumen embalsado en el Ibón recrecido de Ip desde octubre de 2021 (elaboración propia)	18
Figura 5. Perfiles físico-químicos registrados en el Ibón recrecido de Ip (IPP22_S1PRO1)	19
Figura 6. Esquema del método de censado de poblaciones ícticas en un embalse	21
Figura 7. Esquema de la disposición de elementos y comunicaciones en el sondeo acústico	23
Figura 8. Redes de pesca acomodadas en la pequeña embarcación usada en el Ibón recrecido de Ip.	26
Figura 9. Equipo de electropesca desde orilla en zona vadeable	27
Figura 10. Ejemplo de ajuste de curva al semivariograma para el interpolado espacial	28
Figura 11. Ubicación de las estaciones de muestreo directo en el Ibón recrecido de Ip	30
Figura 12. Curva hipsométrica obtenida con el nuevo MDT del Ibón recrecido de Ip	33
Figura 13. Representación del Ibón recrecido de Ip sobre mapa topográfico. Fuente: Elaboración propia	a.35
Figura 14. Batimetría del Ibón recrecido de Ip	35
Figura 15. Representación en 3D de la batimetría del Ibón recrecido de Ip sobre mapa cartográfico. Fuente: Elaboración propia	36
Figura 16. Recorridos del sondeo hidroacústico en el Ibón recrecido de Ip	37
Figura 17. Ejemplo de un ecograma obtenido con el haz horizontal en el Ibón recrecido de Ip	37
Figura 18. Celdas de análisis de hidroacústica y representación de la densidad de peces en el estrato superior	39
Figura 19. Celdas de análisis de hidroacústica y representación de la densidad de peces en el estrato inferior	40
Figura 20. Comparación de la densidad con otros embalses de la cuenca del Ebro	41
Figura 21. Fotografías de las labores de muestreo en el Ibón recrecido de Ip	42
Figura 22 Composición de la asociación obtenida mediante redes	44

Figura 23. Histogramas de frecuencias de capturas en clases de longitud de 5 mm	45
Figura 24. Composición de la asociación obtenida mediante pesca eléctrica	46
Figura 25. Celdas de análisis de hidroacústica y representación de la biomasa de peces en el estrato superior (UOW). Cada punto representa una celda de 50 m de longitud	48
Figura 26. Celdas de hidroacústica y representación de la biomasa de peces en el estrato profundo (LOW). Cada punto representa una celda de 50 metros	48
Figura 27. Comparación de la biomasa con otros embalses de la Demarcación Hidrográfica del Ebro	50
Figura 28. Recta patrón para la cuantificación de las muestras ambientales, representadas por los ciclos de amplificación (Ct) frente a la cantidad de ADN	
Figura 29. Recta patrón para la cuantificación de las muestras ambientales, representadas por los ciclos de amplificación (Ct) frente a la cantidad de ADN.	

1. INTRODUCCIÓN Y ANTECEDENTES

El presente documento constituye el informe final de los trabajos realizados en el Ibón recrecido de Ip (Huesca) durante el año 2022, incluidos en la Asistencia Técnica "Sondeo hidroacústico en embalses de la Demarcación Hidrográfica del Ebro" adjudicado a Ecohydros, S.L. por la Confederación Hidrográfica del Ebro (en adelante, CHE).

La CHE viene realizando desde hace años estudios censales de peces en embalses mediante la combinación de técnicas hidroacústicas y de captura directa con métodos científicos. A lo largo de este tiempo, la metodología se ha depurado y es un momento óptimo para su aplicación a las masas de agua que no han sido aún prospectadas en este aspecto.

Además, se ha realizado un muestreo y análisis de eDNA en cada embalse, para detectar la presencia de dos especies que podrían estar en números tan bajos que resultaran indetectables con las técnicas de pesca directa (redes agalleras y electropesca). Se trata de la trucha común (*Salmo trutta fario*) y la anguila (*Anguilla anguilla*), dos especies autóctonas en declive debido a la presencia de presas u obstáculos en los ríos que suponen una barrera para su desplazamiento natural, ya sea por movimientos migratorios reproductivos o alimentarios.

Debido a la dificultad que supone acceder a este tipo de masas de agua de montaña con el equipamiento de sondeo hidroacústico, se ha realizado un esfuerzo extra, tanto en la toma de datos de campo como en el procesado de gabinete, con el fin de producir una batimetría del embalse.

En el presente informe se presentan los trabajos realizados en la evaluación de las poblaciones de peces del Ibón recrecido de Ip y en la generación de un modelo topobatimétrico de la masa de agua, al tiempo que se somete a contraste el rendimiento de las técnicas hidroacústicas combinadas con muestreos directos de verificación y con métodos de detección de alta sensibilidad (eDNA), como futura metodología de aplicación en las masas de aguas no vadeables para evaluar la biomasa de peces en estos ecosistemas.

El informe recoge la descripción de los métodos aplicados, así como los resultados obtenidos. Consta de una Memoria con sus respectivos ANEXOS, en los que se facilitan *in extenso* los datos que dan lugar las estimaciones sintéticas, tanto en forma de fichas y tablas alfanuméricas como en forma de mapas, según proceda. Se acompaña además de un CD en el que se facilitan los documentos y datos en formato electrónico.

1.1. PRESTACIONES DE LAS TÉCNICAS APLICADAS

Las técnicas hidroacústicas constituyen actualmente la técnica remota por excelencia para cartografiar hábitats y elementos biológicos, tanto los relacionados con los fondos (bentónicos), como con la columna de agua. Los gestores de los ecosistemas acuáticos necesitan identificar y cartografiar los elementos naturales a través de múltiples escalas espaciales, y, en este sentido, los sistemas acústicos resultan óptimos por su enorme rango dinámico, que permite medir propiedades de los objetos desde escalas de centímetros a kilómetros.

La comunidad científico-técnica hace tiempo que ha aceptado los sensores acústicos como una familia de herramientas óptima para estudiar cuantitativamente una diversidad de aspectos relacionados con la morfología y características de los sustratos, sedimentos, rasgos de pequeña escala de los hábitats bentónicos e incluso de la estructura de las comunidades de organismos (animales y plantas) que forman parte de ellos. Esto también es aplicable a organismos pelágicos, permitiendo individualizar elementos biológicos en un rango que trascurre desde escasos milímetros (zooplancton) a varios metros (peces y cetáceos). De hecho, existe ya un cuerpo de conocimiento y tecnología muy desarrollados y con cierta tradición, si bien es cierto que su correcta aplicación depende de una formación técnica altamente especializada.

En lo referente a su aplicación en estudios censales y de dinámica poblacional de los peces, está relativamente extendida en ambientes marinos y en aguas continentales se aplica de forma creciente, debido en gran medida a la elevada portabilidad de los equipamientos hidroacústicos actuales. Existe una norma europea (CEN EN 15910: 2014 Water quality - Guidance on the estimation of fish abundance with mobile hydroacoustic methods) que contempla este tipo de técnicas para la evaluación de la biomasa de peces.

La adaptación y aplicación de estas técnicas a las masas de aguas continentales redunda en una mejora de la cantidad y calidad de la información biológica disponible en las masas de agua no vadeables, es decir, no accesibles a las técnicas de muestreo que requieren el acceso a pie del operario, razón por la que se ha promovido el presente estudio.

1.2. Interés del estudio cuantitativo de la fauna íctica en Masas de Agua No Vadeables

La fauna de peces representa un nivel elevado en la red trófica de los ecosistemas acuáticos e integra información espacio-temporal a mayor escala que los invertebrados. De ahí que resulte de interés su estudio desde diferentes puntos de vista, que transcurren desde la

perspectiva de la conservación de la biodiversidad (especies amenazadas, especies invasoras, etc.), a su gestión como recurso pesquero, pasando por su interacción con la calidad de las aguas y su valor indicador del estado (potencial) ecológico (p.e. Poikane *et al.*, 2015).

A diferencia de los otros elementos biológicos utilizados como indicadores, los peces integran información plurianual y su papel en la clasificación de estas masas de agua no debe ser desdeñado *a priori*, máxime cuando una de las consecuencias más conspicuas de la degradación de las aguas son las mortandades piscícolas.

Es también muy relevante el papel que pueden desempeñar los peces en el ciclo biogeoquímico del embalse y en la calidad del agua en general, a través de mecanismos con repercusión en la red trófica y el control desde arriba del fitoplancton, pero también mediante el incremento del tiempo de residencia de las formas biodisponibles de los nutrientes en la columna de agua provocado por acciones de resuspensión y bombeo desde los sedimentos.

Este tipo de problemas se ponen especialmente de manifiesto en situaciones de sequía y bajas reservas de agua en los embalses, y las técnicas hidroacústicas permiten obtener la información básica necesaria mediante procedimientos ya muy afianzados, como se puede constatar en los tratados técnicos (Simmonds & MacLennan, 2005) y en las normas estándar existentes (ver más adelante).

2. ÁMBITO DE ESTUDIO

2.1. SITUACIÓN

El Ibón recrecido de Ip (MAS 1003) se localiza en el término municipal de Canfranc en la provincia de Huesca. Recibe su aporte hídrico principalmente a través del deshielo de las nieves y los glaciares de la zona, regulando las aguas del barranco de Ip. El uso principal del agua embalsada se destina a la producción de energía hidroeléctrica mediante el llenado y vaciado del mismo.

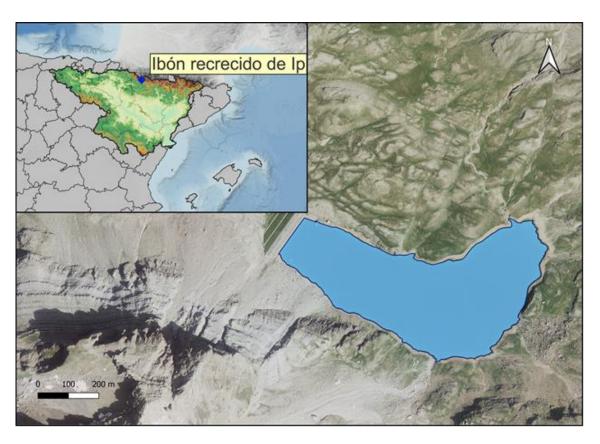


Figura 1. Situación del Ibón recrecido de Ip

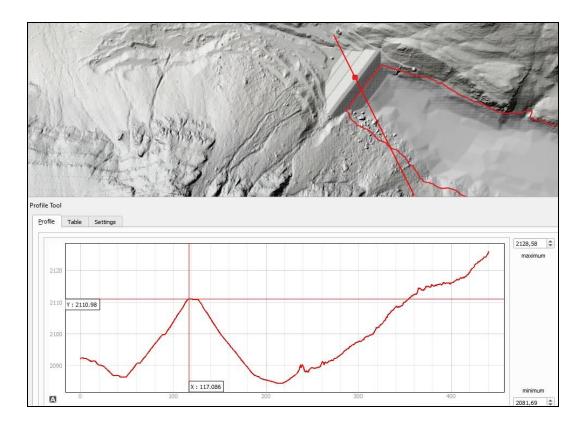
El Ibón recrecido de Ip forma parte del Registro de Zonas protegidas, según el artículo 6 de la Directiva Marco del Agua, en la categoría de zonas de extracción de aguas para consumo y zonas de protección de hábitats o especies (Punto Red Natura 2000: ZEPA "Collarada – Ibón Ip / ES0000277) (CHE, 2019).

2.2. CARACTERIZACIÓN MORFOLÓGICA

Según el inventario nacional de presas y embalses, el Ibón recrecido de Ip tiene una capacidad máxima útil de 5 hm³ y ocupa en su nivel máximo normal (NMN) una superficie de 28,9 ha, lo que supone una profundidad media de 17,5 m y máxima de 38,8 m.

El muestreo hidroacústico, como se explica más adelante en el apartado 3.2, permite obtener una batimetría aproximada que se emplea para cubicar los diferentes estratos y ponderar las densidades y biomasas obtenidas por capa. En este caso se han realizado algunos transectos adicionales para sondear la profundidad en zonas escasamente cubiertas con el planteamiento inicial de sondeo. En la Figura 4 se representa en planta el modelo batimétrico digital obtenido.

A partir de los datos batimétricos del sondeo y de los datos del vuelo LiDAR del IGN, se ha generado un modelo digital de elevaciones. El embalse presentó durante el muestreo (24 de junio de 2022) una profundidad media de 12,6 m y máxima de 25,2 m; la cota durante esas fechas estaba en el entorno de 2.


098,3 msnm, que según la hipsometría generada corresponde a un volumen de 2,951 hm³.

Se ha realizado un trabajo previo de tratamiento de imágenes de satélite para aproximar el contorno correspondiente al límite del agua en el momento del muestreo, o en fechas cercanas. Para ello, se ha recurrido al satélite *Sentinel-2*, equipado con los últimos sensores multiespectrales (MSI), que disponen de una resolución radiométrica de 13 bandas espectrales que se distribuyen en el espectro electromagnético, desde el VNIR (Visible) al SWIR (infrarrojo cercano). Mediante la combinación de estas bandas se pueden generar diferentes índices, muy frecuentemente referidos a la vegetación.

Tras realizar el estudio morfológico, se han evidenciado diferencias significativas en las cotas de nivel máximo normal del embalse de Ibón recrecido de Ip que aparecen en la ficha técnica y las cotas reales sacadas a partir de la integración de los vuelos de ortofotografía aérea con la tecnología LiDAR y los datos batimétricos sacados de nuestros sondeos acústicos. Según la ficha técnica del Ibón, la cota de coronación de la presa se sitúa a 2.119 m y la cota del NMN es de 2.115 m; y al realizar la comprobación, se aprecia que la cota de coronación de la presa es de 2.111 m, por lo que la cota del NMN sería de 2.107metros sobre el nivel del mar.

Figura 2. Perfil de la presa del Ibón recrecido de Ip sobre modelo digital del terreno /Fuente: Elaboración propia a partir de datos originales.

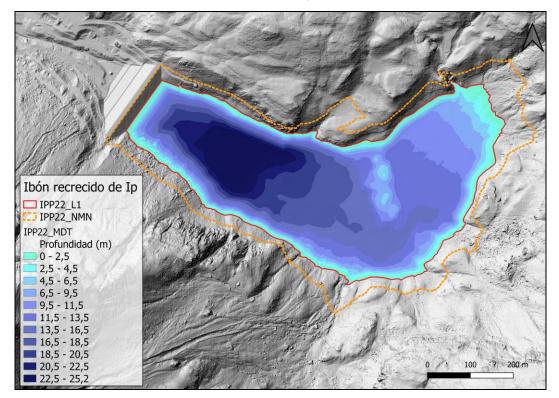


Figura 3. Batimetría del Ibón recrecido de Ip

En la Tabla 1 se presentan el volumen y la superficie del estrato considerado en este caso, obtenido a partir de la batimetría anterior. Los volúmenes de los estratos pueden presentar ciertas desviaciones con respecto a los volúmenes reales, los motivos de esta desviación son múltiples (efecto del procedimiento de interpolación espacial, resolución de la batimetría, acumulación de sedimentos, nivel del embalse, etc.). No obstante, más que los valores absolutos, lo importante es conocer la importancia relativa de cada estrato para la ponderación de las densidades y biomasas.

Tabla 1. Estratos considerados en el Ibón recrecido de Ip

Embalse	Sector	Estrato	Profundidad (m)	Volumen (hm³)	Superficie (ha)
IPP22	1	1 0 a	0 a 5	1,056	22,3
IPP22	1	2	5 a 25	2,896	19,6

2.3. RÉGIMEN HIDROLÓGICO

Como se observa en la figura siguiente, el Ibón recrecido de Ip mantiene en promedio una reserva hídrica de 1,92 hm³ durante el año hidrológico. Se aprecian leves aumentos durante los meses de noviembre y enero, siendo mucho más notorios en el periodo de mayo a octubre, donde finalmente, la reserva hídrica volvió a los niveles del comienzo del año hidrológico. Es en el mes de febrero en el que se alcanza el volumen mínimo del periodo: 0,702 hm³ (14,04% de su capacidad).

El nivel del embalse presenta grandes oscilaciones durante todo el año, variando su volumen en aproximadamente 2 hm³ respecto a la media anual. En la fecha de muestreo (24/06/2022), marcada con una línea roja vertical en la Figura 4, el embalse mantenía una reserva hídrica de 3,28 hm³, que corresponde aproximadamente a un 66 % de su capacidad, según los datos proporcionados por el Sistema Automático de Información Hidrológica de la Demarcación Hidrográfica del Ebro (SAIH).

Según la nueva batimetría elaborada en el presente Estudio, el embalse tiene una capacidad en NMN (cota 2107 msnm) de 5,05 hm³. En la fecha del muestreo el embalse tiene un volumen de reserva estimado en 2,95 hm³, lo que implica que estaría al 54% de su capacidad.

Figura 4. Evolución del volumen embalsado en el Ibón recrecido de Ip desde octubre de 2021 (elaboración propia)

2.4. CARACTERIZACIÓN FISICOQUÍMICA DEL EMBALSE. PERFILES VERTICALES

Para guiar la definición de macrohábitats y establecer la velocidad real del sonido en el agua (parámetro fundamental para el ecosondeo), así como detectar zonas potencialmente hostiles para los peces, se realizó en la zona de máxima profundidad un perfilado vertical de temperatura, conductividad eléctrica, pH, oxígeno disuelto, clorofila e irradiancia. En los gráficos siguientes se presentan los perfiles obtenidos.

En la Figura 5 se recogen los parámetros resumen de cada perfil vertical y la representación gráfica del mismo en la estación de muestreo más cercana a la presa (IPP22_S1PRO1).

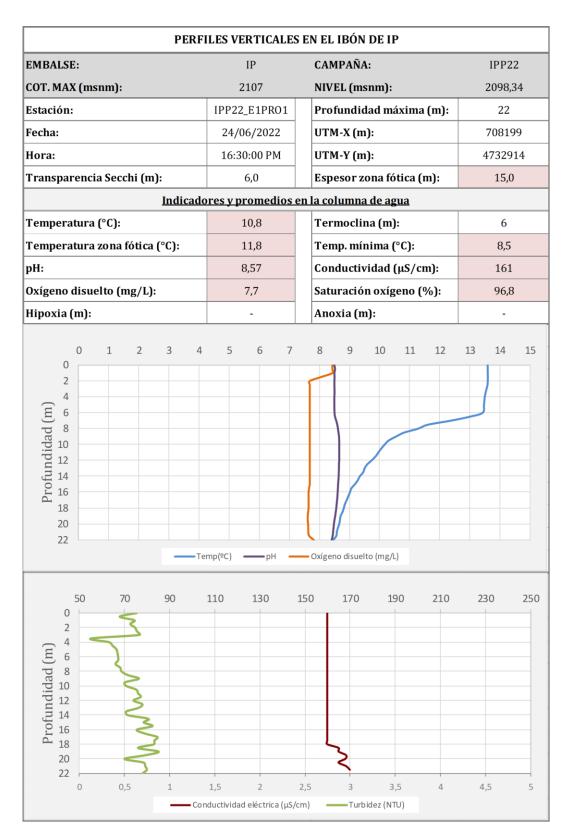


Figura 5. Perfiles físico-químicos registrados en el Ibón recrecido de Ip (IPP22_S1PRO1)

El muestreo se llevó a cabo en la zona del vaso principal del Ibón recrecido de Ip, como se observa en el perfil, la profundidad máxima alcanzada es de 22 metros de profundidad y la columna de agua se encontraba completamente mezclada. Las condiciones de oxigenación de la columna de agua son aceptables, manteniendo una concentración promedio de 7,7 mg/L a lo largo de la columna de agua, siendo más elevada en superficie. Hay una marcada termoclina en torno a los 6 metros de profundidad, con una caída de las temperaturas desde 13,6 °C hasta los 8,5 °C.

El pH es ligeramente básico y constante con el incremento de profundidad siendo su valor promedio de 8,57 unidades de pH. La transparencia del agua registrada en la lectura del disco Secchi es de 6 m lo que supone una profundidad de la capa fótica que no abarca toda la columna de agua, limitando su extensión hasta los 15 metros. Este espesor de la capa fótica es congruente con los valores observados de turbidez, que presenta valores bajos siempre por debajo de 1 NTU.

2.5. POTENCIAL ECOLÓGICO Y ESTADO TRÓFICO

El Ibón recrecido de Ip se cataloga en el ecotipo 13 (dimíctico). Este embalse está incluido en la red de control de vigilancia y en la red de control operativo, y ha sido catalogado como "oligotrófico" y potencial ecológico "bueno o superior", con un estado final de "bueno", según el informe final de Seguimiento de Embalses 2021 de la Confederación Hidrográfica del Ebro (CHE, 2021).

3. METODOLOGÍA

Se ha aplicado un procedimiento de muestreo sistemático mediante ecosondeo vertical y horizontal, combinado con muestreos directos por medio de la extensión de redes y pesca eléctrica desde embarcación.

El procedimiento general empleado, que se plasma en la Figura 6, establece diferentes técnicas de muestreo en función de los macrohábitats diferenciados. Como se puede observar en la citada figura, el procedimiento de trabajo se basa en la combinación optimizada de diferentes técnicas prospectivas y de análisis.

Mediante los sondeos acústicos en posición vertical y horizontal se obtiene una alta densidad muestral relativa a la densidad y talla acústica de los peces, y cada elemento de análisis se posiciona en tres dimensiones (latitud, longitud y profundidad). Además, se obtiene un levantamiento del fondo que permite elaborar un modelo batimétrico digital, que sirve para cubicar adecuadamente las estimaciones poblacionales en cada macrohábitat.

Metodología de censado de peces

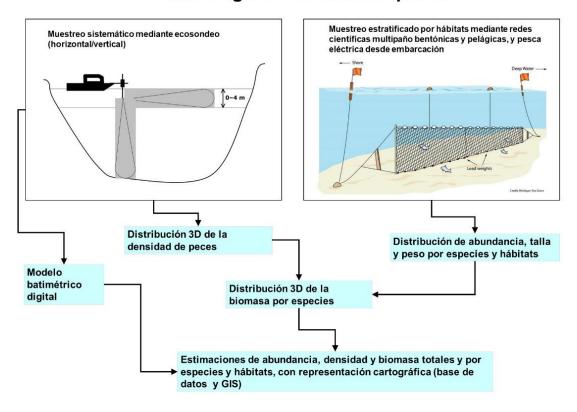


Figura 6. Esquema del método de censado de poblaciones ícticas en un embalse

Mediante el muestreo con métodos directos de pesca científica en lugares representativos de los diferentes sectores definidos (macrohábitats), se alcanza un conocimiento de la distribución de especies y relaciones entre la talla y el peso, que permiten finalmente estimar biomasas por especies y sectores.

3.1. DISEÑO DEL MUESTREO

Se ha planteado una distribución sistemática de las unidades de muestreo acústico, con una separación entre transectos de entre 50 y 100 m.

No obstante, se han realizado además recorridos periféricos adicionales proyectando el haz horizontal hacia las riberas, es decir, perpendicularmente a la línea de costa, en aquellos lugares en que la diferenciación del hábitat lo aconsejaba. Con ello se ha maximizado el alcance del sondeo en zonas someras, menos accesibles a un ecosondeo vertical.

Con el objetivo de conocer la composición específica del embalse, se dispusieron una serie de redes agalleras multipaño tratando de cubrir los gradientes presa-cola, zona litoral-zona pelágica y por último el gradiente en profundidad. En las zonas litorales, además se realizaron transectos de pesca eléctrica desde embarcación.

En 3 estaciones de muestreo, coincidentes con puntos de pesca directa, se han tomado muestras de agua para análisis de eDNA de trucha común y de anguila. En esos mismos puntos se han realizado perfiles verticales de parámetros físico-químicos y registros de transparencia del agua mediante disco de Secchi.

Los muestreos acústicos y de pesca directa se han realizado simultáneamente el día 24 de junio de 2022.

3.2. MUESTREOS REMOTOS: HIDROACÚSTICA

3.2.1. Prospección hidroacústica

El equipo utilizado es una ecosonda científica BioSonics DTX, con un transductor elíptico digital de haz dividido y frecuencia de 430 kHz, orientado horizontalmente, y un transductor digital de haz dividido y frecuencia de 200 kHz, orientado verticalmente. Estos sistemas ofrecen un rango dinámico muy superior a los analógicos. El transductor utilizado en orientación vertical tiene un ángulo de apertura de 10°, lo que permite obtener un volumen muestral que casi duplica los de los transductores estándar.

Los transductores van sujetos lateralmente al barco mediante un soporte construido ex profeso que los mantiene sumergidos en su posición, horizontal o vertical, y orientados perpendicularmente al avance de la embarcación.

Durante la adquisición de datos, las posiciones proporcionadas por el sistema GPS se incorporan de forma automática y directa a los ficheros de datos, de modo que los datos de cada medición efectuada por la ecosonda van vinculados de forma inequívoca a sus respectivas posiciones. Con cada pulso o muestra, el sistema adquiere información sobre todos los objetos que se encuentran en ese momento en la columna de agua y dentro del haz acústico que emite la sonda.

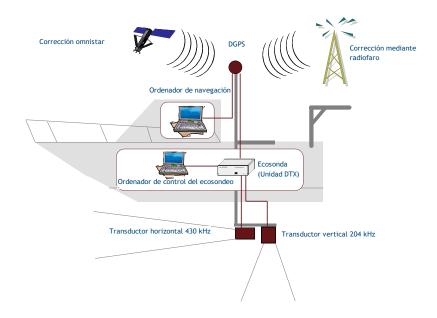


Figura 7. Esquema de la disposición de elementos y comunicaciones en el sondeo acústico

Los datos adquiridos se someten a un postproceso, mediante el cual se extraen de los ficheros de datos crudos, adquiridos en el campo y las posiciones originales suministradas por el GPS. Para ello, se empieza por identificar el fondo en cada ecograma.

Posteriormente, se visualizan en forma de ecograma todos los datos acústicos obtenidos y se revisan para descartar posibles artefactos (detecciones de burbujas, etc.) en los ficheros, excluyendo de esta forma falsos ecos.

3.2.2. Procesado de datos acústicos

Se ha empleado una combinación de las técnicas de detección de ecos (ecoconteo y recuento de rastros) y de ecointegración. La técnica de detección de ecos permite, para cada

ping (muestra) o rastro, catalogar cada señal como objetivo (pez) y estimar su intensidad acústica, mientras que, en el caso de la ecointegración, se estima la intensidad acústica de una agrupación de peces y se asigna una intensidad media por individuo.

Esta última técnica se aplica a las agrupaciones densas (bancos) de peces, que no permite a los sistemas acústicos resolver ecos individuales, y también a la insonificación horizontal, en la que la variabilidad de la señal en función de la orientación del pez respecto al haz es alta y sigue patrones desconocidos en un sondeo móvil. Se aplica en todos los casos al estrato superficial, en el que el sondeo se realiza con orientación horizontal del haz, dado que la estimación de la talla acústica individual en este tipo de sondeo móvil presenta un alto grado de incertidumbre.

En este caso se ha aplicado la técnica de ecoconteo para estimar la abundancia en los estratos profundos, sondeados con orientación vertical del haz acústico, dado que la densidad de peces y el ruido por otros factores (burbujas, etc) no son excesivos. Los ecos se compensan con la distancia al eje del haz.

Además de la densidad de peces en cada celda georreferenciada, se obtiene la intensidad media del blanco o talla acústica (TS, expresada en dB).

Para convertir la TS en talla física del pez, en los ecogramas obtenidos mediante orientación vertical del haz se ha aplicado un algoritmo adaptado a la frecuencia acústica aplicada, a partir de la ecuación básica de Love (1977). Tras realizar un análisis cruzado con las pescas, se ha optado en este caso por utilizar una variante de esta ecuación desarrollada para especies europeas de peces por J. Frouzova *et al.*(2005).

En el caso de la ecointegración se ha utilizado la talla media de las capturas obtenidas en las pescas para obtener la intensidad de reverberación de sección transversal (*backscattering cross section*) utilizando regresiones *ad hoc* (Kubecka *et al.*, 2009).

3.3. MUESTREOS DIRECTOS DE PESCA

3.3.1. Redes agalleras multipaño

A efectos de obtener información sobre la distribución de especies y las relaciones talla/peso, se han calado redes de muestreo científico de tipo NORDIC (Fiskerivertket 2000:1), desarrolladas por el *Nordic Freshwater Fish Group* y que constituye un estándar internacional (CEN-EN 14.757/2006).

Constan estas redes de 12 paños agalleros de luz creciente, que va desde 5 hasta 55 mm, en una longitud total de 10 m, 30 m o 40 m de largo y de 1,5 ó 6 m de alto. La ratio entre la luz de paños consecutivos es de 1,25 y sigue una progresión geométrica. Este tipo de red constituye un arte de pesca no sesgado, puesto que captura con similar probabilidad todas las tallas.

Para completar la información aportada por las redes estándar, se han empleado otras redes formadas por cuatro paños de luces de mayor tamaño cuyo objetivo es la caracterización de las tallas grandes.

La nomenclatura de cada red depende de la ubicación y la altura a la que se despliega, de tal manera que hay redes bentónicas (caladas al fondo), mesopelágicas y epipelágicas, ubicadas ambas en la zona pelágica y caladas, respectivamente, a una profundidad intermedia y en superficie.

Tabla 2. Descripción de las redes de muestreo empleadas.

Código	Número de paños * Longitud (m)	Luz de malla (mm)	Longitud * Altura (m)	Esfuerzo respecto a estándar
BEN	16 * 2,5	5 - 135	40 * 1,5	1,33
EPL	15 * 2,5	6,25 - 135	37,5 * 6	5
MPL	15 * 2,5	6,25 - 135	37,5 * 6	5

La unidad estándar de esfuerzo de pesca está constituida por una red de 12 paños y 1,5 m de altura (45 m²), calada durante 12 h. El esfuerzo de muestreo se ha repartido geográficamente siguiendo una previsión de hábitats o, como se suelen denominar en este tipo de trabajos, "polos de atracción". En este caso, el diseño muestral no responde a un carácter sistemático sino estratificado por sectores y hábitats.

Figura 8. Redes de pesca acomodadas en la pequeña embarcación usada en el Ibón recrecido de Ip

3.3.2. Pesca eléctrica desde embarcación

Además de las pescas con redes, en las zonas litorales someras (hasta 2 metros), especialmente en presencia de macrófitos acuáticos o vegetación de ribera, se realizó un muestreo complementario mediante pesca eléctrica desde embarcación.

Dada la complicada logística para acceder a los lagos de montaña, que se hubo de realizar en helicóptero, los métodos y materiales para hacer frente a los muestreos directos de electropesca fueron diferentes. El equipo de pesca utilizado fue el Hans-Grassl GmbH EL 60 II GI (1,3 kW), un motor portátil de explosión porteado por un técnico, para realizar los transectos de pesca en zonas vadeables de orilla.

La forma de proceder consiste en realizar transectos paralelos a la orilla, de los que se anotan las coordenadas y hora de inicio y fin, en los que se van recogiendo los peces que son atraídos a los ánodos. Una vez finalizado el transecto, se procesan los peces capturados. Para el cálculo de capturas por unidad de esfuerzo, la unidad estándar de esfuerzo que se aplica es

de 100 metros de orilla. Los muestreos de pesca eléctrica se realizan preferentemente en horario del atardecer.

Figura 9. Equipo de electropesca desde orilla en zona vadeable

3.4. INTERPOLACIÓN ESPACIAL Y ESTIMACIONES GLOBALES

Para presentar los resultados obtenidos, todas las posiciones contenidas en los ficheros tienen que convertirse a UTM en datum ETRS89 Huso 31. Todos los mapas e ilustraciones que se incluyen en el presente Estudio se han representado en este sistema de referencia.

El embalse se ha dividido en estratos coherentes de profundidad, que han sido debidamente cubicados mediante el modelo batimétrico digital. Esta estratificación se ha efectuado considerando los registros verticales de temperatura y oxígeno disuelto y de la penetración de la luz, obtenidos durante el muestreo, así como criterios relativos a la orientación del transductor y a la coherencia del haz acústico en horizontal.

Para cada estrato se ha realizado una interpolación espacial utilizando métodos geoestadísticos ajustados *ex profeso*, siguiendo las buenas prácticas en investigaciones de pesquerías.

Para ello en primer lugar se ha ajustado una curva al semivariograma (ver ejemplo en la Figura 10) y en base a ese modelo, se ha procedido al interpolado propiamente dicho mediante *kriging* ordinario. Con ello se obtiene una superficie continua de densidad o biomasa que permite visualizar las zonas de mayor concentración de peces.

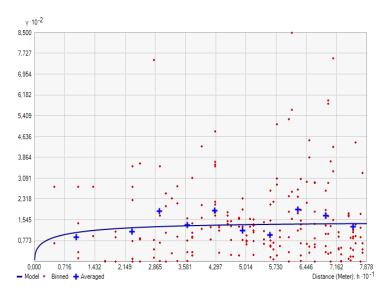


Figura 10. Ejemplo de ajuste de curva al semivariograma para el interpolado espacial

El interpolado se realiza independientemente para cada estrato considerado, que se han nombrado utilizando la siguiente nomenclatura internacional:

Upper Open Water (UOW): Estrato superior

Middle Open Water (MOW): Estrato intermedio

Lower Open Water (LOW): Estrato inferior

3.5. EVALUACIÓN SEGÚN EL ÍNDICE BIÓTICO QFBI

No existe en la actualidad un método oficial de evaluación del potencial ecológico de los embalses basado en el bioindicador peces. No obstante, se dispone de un índice biótico de calidad desarrollado previamente dentro del proyecto de I+D+i del MARM "Investigación de la respuesta hidroacústica específica y desarrollo de métodos para la evaluación cuantitativa de las comunidades de peces y del potencial ecológico en embalses" (Expte.: 082/RN08/01.1), coordinado por Ecohydros. Su cálculo puede tener interés a efectos de comparar sintéticamente la calidad entre los diferentes embalses según la composición y biomasa de las biocenosis de peces.

Esta aproximación a un índice de calidad basado en los peces se denominó QFBI (*Quantitative Fish Biotic Index*). Para su desarrollo se siguió una metodología en la línea de la adoptada por el grupo europeo de intercalibración y que consiste en emplear como variable dependiente una medida del grado de presión al que está sometido el embalse (*Global Pressure Index*) y como variables independientes las métricas calculadas a partir de los datos cuantitativos de peces.

Mediante regresión logística (*stepwise*) se seleccionaron cinco métricas que combinadas generan el valor del QFBI. En la tabla siguiente se presentan las métricas empleadas y los coeficientes de la ecuación.

Tabla 3. Métricas y coeficientes para el cálculo del QFBI

Métrica	Variable	Variable Descripción	
		Término independiente	-2,31
M1	LOG_BIO	Logaritmo de la biomasa total del embalse expresada en g/ha	0,94
M2	LOG_BIO_native	Logaritmo de la biomasa de especies autóctonas del embalse expresada en g/ha	-1,49
МЗ	LOG_%_BIO_PISC_Exotic	Logaritmo del porcentaje en biomasa de especies exóticas piscívoras	6,50
M4	LOG_BIO_PISC_Exotic	Logaritmo de la biomasa de especies exóticas piscívoras expresada en g/ha	0,27
M5	LOG_BIO_ciprin_native	Logaritmo de la biomasa de ciprínidos autóctonos expresada en g/ha	0,79

O lo que es lo mismo, expresado en forma de ecuación:

QFBI =
$$-2.31 + 0.94xM1 - 1.49xM2 + 6.5xM3 + 0.27xM4 + 0.79xM5$$

Una de las cuestiones más delicadas en la evaluación de la calidad es la fijación de los valores de corte entre clases, y principalmente el valor que separa el potencial moderado del bueno. En esta primera versión se han empleado los siguientes valores de corte:

Tabla 4. Valores de corte del QFBI empleados para la clasificación del potencial ecológico

Clase	1	1	2	2	;	3	4	1	ţ	5
Potencial	Ópt	imo	Bu	eno	Mode	erado	Defic	iente	Ma	alo
QFBI		-	1	0	,2	1,	,6	2	,3	

3.6. DETECCIÓN DE TRUCHA COMÚN Y ANGUILA EUROPEA MEDIANTE ADN AMBIENTAL

3.6.1. Muestreo de ADN ambiental (eDNA)

Para la detección de trucha común (Salmo trutta fario) y de anguila (Anguilla anguilla) se tomaron 3 muestras de 1L de agua en otras tantas estaciones de muestreo. En una de esas estaciones (punto más profundo) las muestras se tomaron en 3 profundidades diferentes repartidas en la columna de agua. En las otras dos estaciones las 3 muestras se tomaron en superficie a lo largo de la zona cubierta por el muestreo con red o con electropesca.

Todas las muestras se tomaron justo antes de los muestreos directos realizados para este estudio. Inmediatamente fueron refrigeradas a bordo y congeladas al llegar a tierra para ser almacenadas hasta su procesado.

En la Figura 11, se representa la ubicación de las redes agalleras de diferente tipo utilizadas en el muestreo directo de peces, así como los recorridos de pesca eléctrica y los puntos de registro físico-químico y de muestreo de eDNA.

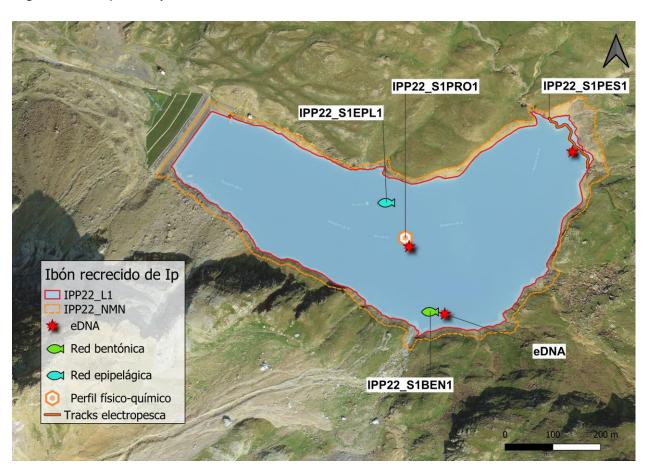


Figura 11. Ubicación de las estaciones de muestreo directo en el Ibón recrecido de Ip.

3.6.2. Obtención de ADN ambiental de trucha común y de anguila en muestras de agua

Para aislar el ADN presente en el agua del embalse fue preciso filtrar las muestras con bombas de presión negativa y filtros de 0,2 micras de poro, en condiciones de esterilidad y bajo estrictos controles para evitar posibles contaminaciones de las muestras. Así pues, las muestras se filtraron en un laboratorio aislado y todos los materiales que no fueran desechables se esterilizaron entre cada una de las muestras.

La extracción de ADN se realizó en cabina de flujo laminar con luz ultravioleta (UV), empleando el kit para muestras de agua "*DNeasy Power Water Kit*" de Qiagen. Una vez aislado el ADN de las muestras ambientales, las extracciones se conservaron congeladas (-20°C) hasta su posterior análisis.

Antes de proceder con los análisis específicos de detección de trucha común y de anguila, fue preciso confirmar la calidad e integridad de las muestras. Para ello, el ADN ambiental aislado se amplificó con un marcador genético universal del gen ribosomal 18S. Esto permite por un lado confirmar la presencia de ADN en las muestras, ya que este marcador amplifica multitud de organismos, y por otro lado descartar la presencia de inhibidores de la amplificación por PCR, comunes en las muestras ambientales.

La detección del marcador universal del gen ribosomal se realizó en un termociclador de PCR convencional modelo *Verity Blue (Life Technologies, Inc., Applied Biosystems, Carlsbad, CA, USA)*. Las detecciones tanto de trucha común como de anguila europea se realizaron mediante PCR cuantitativa (qPCR) en un termociclador *7,900 HT Fast Real- Time PCR System (Life Technologies, Inc., Applied Biosystems, Carlsbad, CA, USA)*. Todas las amplificaciones se replicaron en el laboratorio, repitiendo los análisis en ocasiones diferentes, correspondientes a días distintos, para asegurar la consistencia y fiabilidad de los datos.

3.6.3. Detección específica de trucha común

Para la detección de trucha común se utilizó un cebador específico y una sonda *TaqMan MGB* (Gustavson *et al.*, 2015, siguiendo las recomendaciones de Fernández *et al.*, 2018). El cebador específico de *Salmo trutta* se une y amplifica únicamente el ADN de trucha común, no de otros organismos ni de otras especies de trucha. Si en la muestra ambiental no hay ADN de *Salmo trutta*, no habrá amplificación, ni por tanto señal, ya que la sonda no emitirá fluorescencia.

Cuando se produce amplificación, porque hay coincidencia del código de los cebadores (o *primers*) con el del ADN de la muestra, se libera un extremo de la sonda, que pasa a emitir fluorescencia. Con ello es posible detectar, mediante la lectura de fluorescencia, la presencia de la especie y adicionalmente, mediante cálculos, la cantidad de ADN de trucha presente en la muestra.

3.6.4. Detección específica de anguila europea

Para la detección de anguila europea se utilizó un marcador específico de desarrollo propio de Ecohydros. El marcador específico de *Anguilla anguilla* funciona igual que el previamente descrito para *Salmo trutta*; se une y amplifica únicamente el ADN de anguila, pero no el de otros organismos.

3.6.5. Estimaciones de biomasa

La metodología de PCR cuantitativa (qPCR) permite estimar la cantidad de ADN de la muestra a través de cálculos derivados del número de moléculas presentes en la muestra ambiental analizada, y de su composición molecular.

Se calculó una recta patrón de diluciones seriadas del producto de PCR con amplicones del fragmento especie del marcador utilizado para la detección de la trucha común. Para poder obtener dicha recta patrón, se cuantificó mediante fluorimetría la concentración de ADN disponible en el producto de PCR a utilizar. Después se analizó el genoma de la especie y se encontró la secuencia de los primers para poder discernir el número de bases que existían entre ellos. Finalmente se calculó el número de copias de ADN de la especie.

Todos los ensayos realizados con los amplicones y con tejido de trucha y anguila se realizaron por separado, en una sala de laboratorio diferente, aislados de las muestras ambientales, para evitar cualquier posible contaminación cruzada.

4. RESULTADOS

4.1. BATIMETRÍA

Durante los muestreos en el Ibón recrecido de Ip se aumentó el esfuerzo del sondeo acústico para obtener un mayor número de celdas con información batimétrica del fondo del embalse.

A partir de los sondeos acústicos descritos se ha extraído la profundidad del fondo en cada punto (unos 8 puntos por metro, en el sentido de avance de la embarcación) y los puntos se han integrado con los del vuelo LiDAR del PNOA (fecha de 16/01/2021). Los puntos se han interpolado espacialmente para obtener un modelo digital de elevaciones desde la cota de máximo nivel de embalse (NMN) de 2107,0 msnm, hasta la mínima cota registrada en el sondeo (2073,2 msnm). Hay que dejar constancia de que la cota nominal de NMN era la 2.115, lo que implica una diferencia de 8 m respecto a la inferida del vuelo LiDAR.

A partir del modelo digital obtenido se ha generado una curva hipsométrica con incrementos de cota de 0,1 m y se ha ajustado una función polinómica (Figura 12).

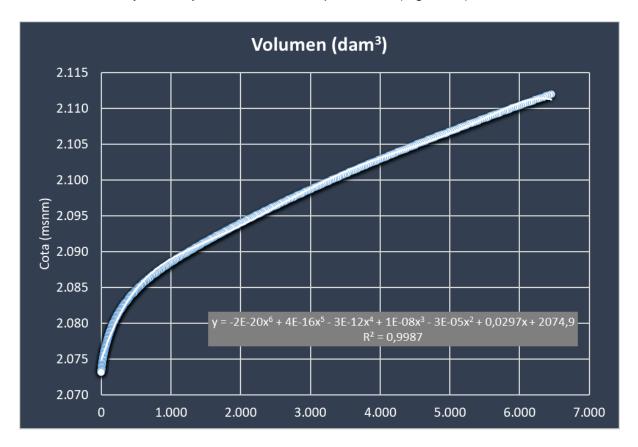


Figura 12. Curva hipsométrica obtenida con el nuevo MDT del Ibón recrecido de Ip

La profundidad máxima en situación de máximo nivel de embalse es de 39 m, y durante el muestreo esa profundidad máxima fue de 25 m. El volumen en máximo llenado se estima en 5,05 hm³, frente a los 5 hm³ nominales.

A partir del nuevo MDT del embalse se han calculado una serie de indicadores morfométricos (Tabla 5) que reflejan en su conjunto un embalse de morfología glaciar, con un índice de alargamiento superior al promedio de los lagos de la cuenca del Gállego y con un desarrollo de costa (calculado como DI = $P/2\sqrt{\pi}A$) que determina una morfología subrectangular, es decir, algo menos circular que un lago glaciar típico de los Pirineos.

Tabla 5. Valores de diferentes índices morfométricos en el Ibón recrecido de lp a partir del nuevo MDT

Índice	Unidad	Valor
Cota NMN nominal	msnm	2.115
Cota NMN actual	msnm	2.107
Volumen NMN nominal (Vmax)	hm³	5,000
Volumen NMN actual (Vmax_2022)	hm³	5,054
Superficie NMN (Amax)	ha	28,86
Profundidad máxima (Zmax)	m	38,8
Profundidad media (Zm)	m	17,5
Relación Zm/Zmax		0,45
Perímetro (P)	m	4.053
Longitud máxima (L)	m	1.185
Ancho medio (W)	m	243,5
Índice de alargamiento (L/W)		4,9
Índice de desarrollo de costa (DI)		2,1

En las figuras siguientes se aprecia que el embalse mantiene la morfología original de un lago glaciar, con una cubeta profunda y plana cercana a la presa. Prácticamente la zona posterior del embalse presenta una forma cuadrangular en rampa de moderada pendiente y queda separada de la zona de cabecera por una estructura rocosa que ocluye parcialmente el perfil

transversal. En la Figura 13 se representa el contorno del nivel del embalse durante el muestreo (IPP22_L1) y el del NMN (IPP22_NMN_VD).

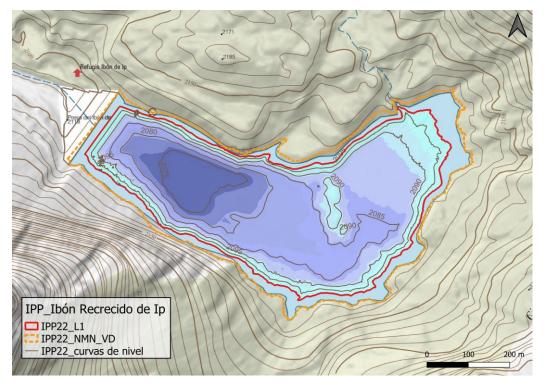


Figura 13. Representación del Ibón recrecido de Ip sobre mapa topográfico. Fuente: Elaboración propia.

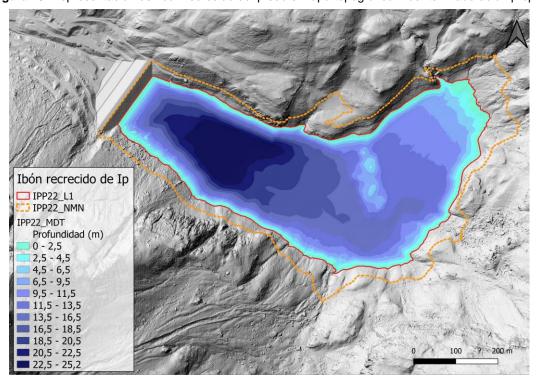
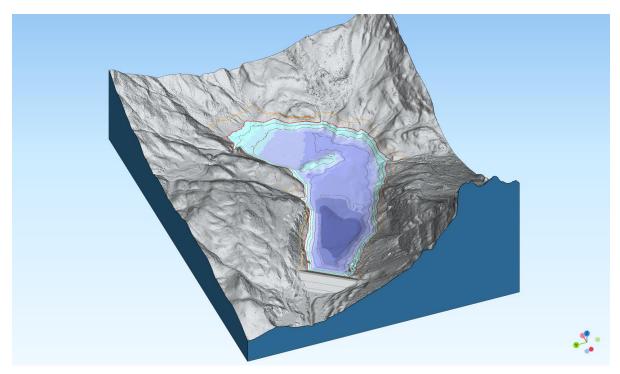



Figura 14. Batimetría del Ibón recrecido de Ip

Figura 15. Representación en 3D de la batimetría del Ibón recrecido de Ip sobre mapa cartográfico. Fuente: Elaboración propia

4.2. SONDEO HIDROACÚSTICO: DENSIDADES

Los recorridos móviles de ecosondeo han cubierto una longitud total de 7,5 km (con dos transductores), lo que supone un valor del índice de cobertura (Da) de 15,8. Los recorridos completos sobre el mapa batimétrico se presentan en la Figura 16.

Obsérvese que los recorridos realizados se circunscriben al contorno del agua (rojo) correspondiente con el día de muestreo.

Mediante el método descrito se ha obtenido una estimación de densidad en celdas de 50 m y también la talla acústica corregida de cada uno de los blancos y rastros ("*tracks*") de peces.

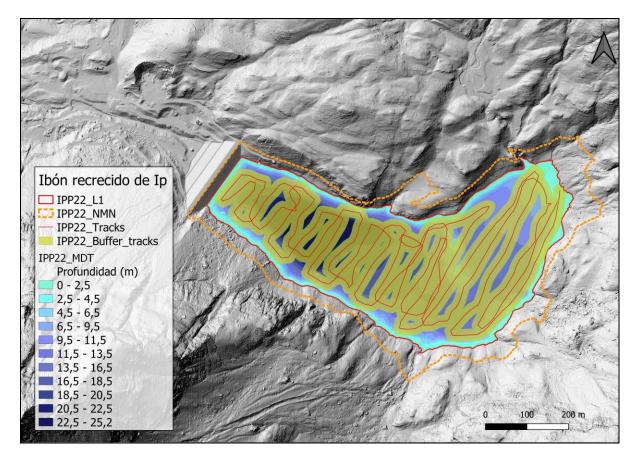


Figura 16. Recorridos del sondeo hidroacústico en el Ibón recrecido de Ip

En la Figura 17 se muestra un ejemplo de ecograma durante el muestreo acústico en el Ibón recrecido de Ip, realizado con haz horizontal y asociado a una distancia de la embarcación de 30 metros. Se representa la orilla/fondo o zona de choque del haz (línea amarilla), a una distancia promedio de unos 22 metros. Se pueden observar señales de diferentes tamaños en color amarillo cercanas a la orilla, que corresponden con señales de peces muy cercanos a la orilla del embalse.

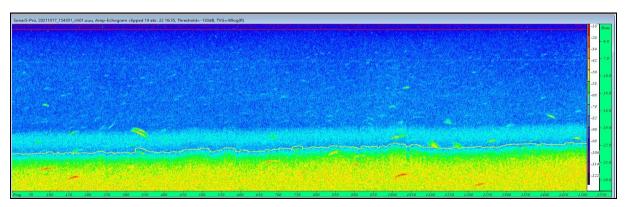


Figura 17. Ejemplo de un ecograma obtenido con el haz horizontal en el Ibón recrecido de Ip

4.2.1. Distribución y estimación de la densidad de peces

En la Tabla 6 se ofrecen los estadísticos descriptivos de cada estrato vertical analizado. La densidad se ha expresado en individuos por decámetro cúbico (1 dam³ = 1.000 m³). Los valores de densidad son bajos y no se aprecian diferencias significativas entre estratos de profundidad.

Tabla 6. Densidad de peces (ind/dam³) por estratos, estimada mediante acústica

Embalse	Sector	Estrato	Densidad media (ind/1000m³)	Densidad máxima (ind/1000m³)	Número de casos	Número de casos con valor 0	Desviación típica
IPP22	1	1	4,52	555	149	92	45,5
IPP22	1	2	0,33	4	128	98	0,7

Se ha obtenido una densidad total del embalse de $1,83 \pm 0,29$ ind/dam³. Se trata de un valor moderadamente bajo, pero excesivo para lo que cabe esperar en sistemas poco productivos y de embalses oligotróficos de alta montaña.

En las figuras siguientes se presenta la disposición geográfica de las celdas de análisis para cada uno de los estratos y se representa mediante símbolos graduados la densidad de cada celda de análisis. Cada punto representa una celda de 50 m de longitud.

Se ha empleado el método de *Jenks "Natural breaks optimization*" para establecer los valores de corte de los datos de densidad. Es un método de agrupamiento de datos diseñado para determinar la mejor disposición de valores en diferentes clases. El método busca reducir la varianza dentro de las clases y maximizar la varianza entre las clases. Por ello, las clases de valores obtenidas pueden ser diferentes para cada grupo de casos (estratos).

Se aprecia que los peces en el estrato superior (UOW) se ubican preferentemente en zonas de aguas someras cercanas a las orillas. Sin embargo, en el estrato inferior (LOW) los valores más altos de densidad se concentran en la zona central del embalse y alejados de las orillas.

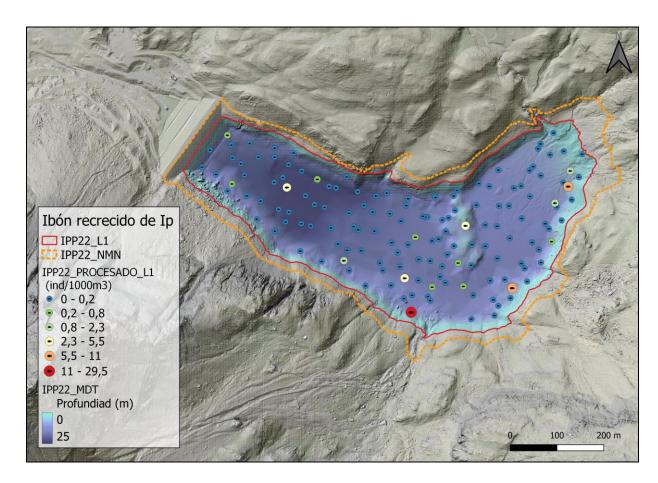


Figura 18. Celdas de análisis de hidroacústica y representación de la densidad de peces en el estrato superior

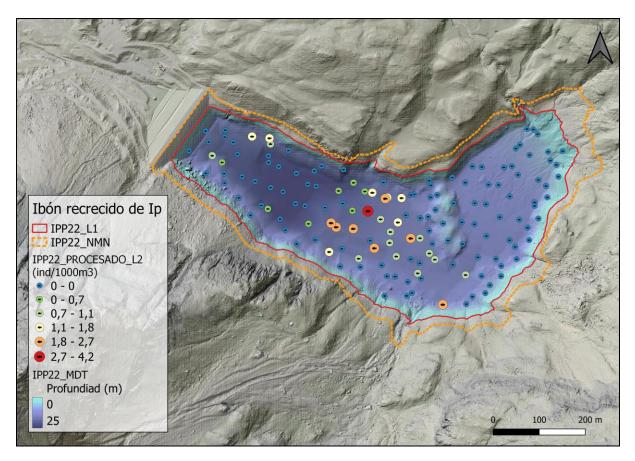


Figura 19. Celdas de análisis de hidroacústica y representación de la densidad de peces en el estrato inferior

4.2.2. Comparativa con otros embalses de la cuenca del Ebro

En el diagrama de barras siguiente se presentan los resultados de densidad obtenidos en el lbón recrecido de Ip, en comparación con otros embalses de la cuenca del Ebro en los que se ha trabajado con técnicas hidroacústicas y se dispone de datos cuantitativos. La línea roja representa el valor promedio de los embalses considerados, en la que el embalse de Utchesa Seca constituye un extremo por el lado superior de la distribución.

Densidad (ind/1000m³)

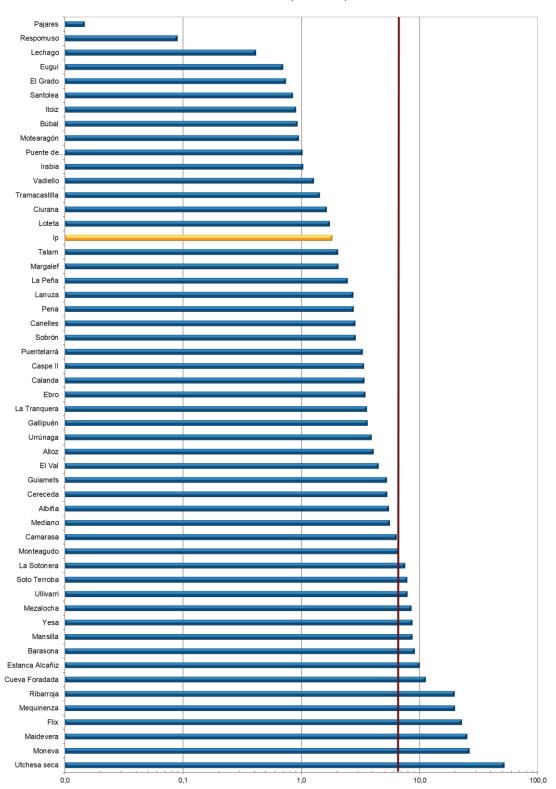


Figura 20. Comparación de la densidad con otros embalses de la cuenca del Ebro

4.3. MUESTREOS DIRECTOS: COMPOSICIÓN Y BIOMASA ESPECÍFICA

Los muestreos directos se han realizado mediante pesca con redes agalleras multipaño según se describen en la norma CEN 14.757 y mediante pesca eléctrica desde embarcación en las zonas litorales someras.

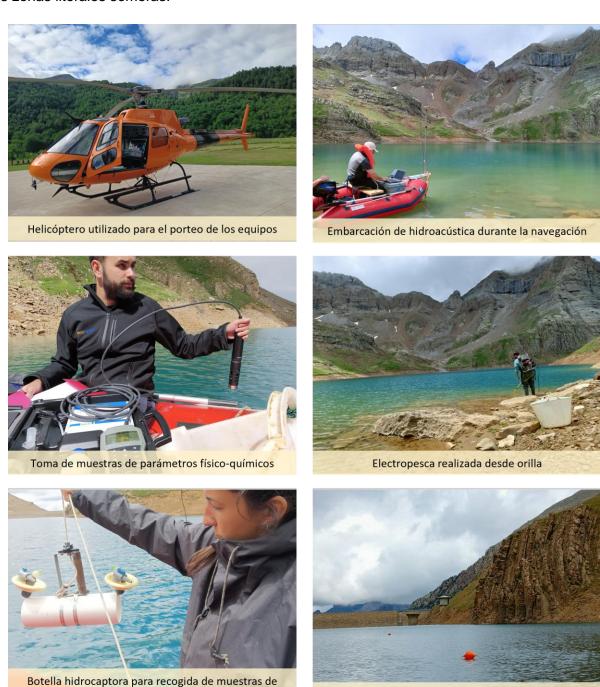


Figura 21. Fotografías de las labores de muestreo en el Ibón recrecido de Ip

eDNA

Ubicación de red epipelágica en el vaso principal

4.3.1. Especies presentes en el embalse

Las dos (2) especies detectadas en los muestreos de diferente tipo realizados en el Ibón recrecido de Ip resultaron ser autóctonas en la Demarcación Hidrográfica del Ebro (Tabla 7). Sin embargo, cabe pensar que el Ibón original podría carecer de fauna de peces debido a las barreras biogeográficas de estos lagos de alta montaña. En cualquier caso, el piscardo es una especie introducida en esta masa de agua y está muy extendida en este tipo de ambientes debido a su papel como especie forraje de la trucha, que tiene interés como trofeo en la pesca recreativa.

Tabla 7. Especies presentes en el embalse

Nombre común	Nombre científico	Carácter en la DHE
Trucha común	Salmo trutta fario	Autóctono
Piscardo	Phoxinus bigerri	Autóctono

Estas consideraciones llevan a la conclusión de que la presencia de estas especies en el lbón recrecido de Ip no es natural, sino producto de introducciones. Estas especies constituyen una red trófica muy simplificada, con la especie de trucha como depredadora del piscardo. Sin embargo, en su conjunto constituyen un factor de presión añadido para diferentes especies autóctonas de algas, invertebrados y anfibios y, en casos comparables, se ha abordado su erradicación o control (proyecto LIFE+LIMNOPIRINEUS: CONSERVACIÓN DE HÁBITATS Y ESPECIES ACUÁTICAS DE LA ALTA MONTAÑA DE LOS PIRINEOS).

4.3.2. Composición y distribución de especies

Capturas con redes

El total de capturas con redes agalleras fue de 75 ejemplares, con un peso total de 1 kg, lo que supone 88 CPUE (ejemplares capturados por unidad de esfuerzo) y 0,75 kg de biomasa por unidad de esfuerzo. Se emplearon un total de 2 redes en 8 horas de pesca (4,47 unidades de esfuerzo). En la Figura 11, se representa la ubicación de las redes de muestreo y los recorridos de pesca eléctrica.

Tabla 8. Ejemplos de las redes utilizadas durante los muestreos directos en Ibón recrecido de Ip

Tipo de lance	Código	Número de paños	Longitud (m)	Altura (m)	Esfuerzo
Red bentónica	IPP22_S1BEN2	16	40	1,5	3,63 45m ² /12h
Red epipelágica	IPP22_S1EPL1	16	40	6	0,84 45m ² /12h

En la Tabla 9 y en la Figura 22 se facilitan los resultados obtenidos de las redes, agregados por especies y para cada uno de los estratos del embalse.

Los términos empleados para describir la asociación de peces del embalse se describen en el Glosario al final del documento.

Tabla 9. Resultados de las pescas con red por especies

	Capturas	CPUE (ind/ud. esf.)	CPUE (%)	Biomasa (g)	BPUE (g/ud. esf.)	BPUE (%)	Longitud furcal media (mm)	Peso medio (g)
Phoxinus bigerri	73	87	98,3	219	261	34,5	63	3
Salmo trutta fario	2	1	1,7	800	495	65,5	335	400
Total	75	88	100,0	1.020	756	100,0	70	14

% CPUE

98%

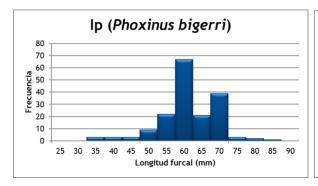
Phoxinus bigerri

35%

65%

Salmo trutta fario

Figura 22. Composición de la asociación obtenida mediante redes


Se observa que la asociación está dominada (98,3%) en términos de abundancia por el piscardo (*Phoxinus bigerri*), seguida con un porcentaje muy inferior por la trucha común (*Salmo*

trutta fario) (1,7%). En cambio, en términos de biomasa, ocurre lo opuesto. Es la trucha común la que domina con un 65,5% sobre el piscardo (34,5%).

En la Figura 23 se muestran los histogramas de frecuencias de las capturas por clases de talla de 5 mm. Se han incluido las capturas realizadas mediante pesca eléctrica, cuyos resultados se exponen en el apartado siguiente.

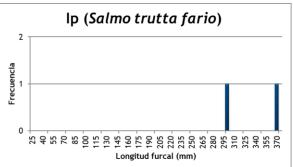


Figura 23. Histogramas de frecuencias de capturas en clases de longitud de 5 mm

En el Ibón recrecido de Ip solamente el piscardo presenta una población con cierta estructura, con ejemplares de diferentes clases de edad. En cambio, no se capturaron ejemplares juveniles o alevines de trucha común, tan sólo dos ejemplares adultos. Esto indica que la trucha no se está reproduciendo en la cuenca del Ibón y que los ejemplares que lo habitan son los que han sobrevivido a las introducciones.

Resultados de la pesca eléctrica

El rendimiento de la pesca eléctrica fue inferior al de las redes, con una captura total de 100 peces con un peso total de 0,25 kilos, lo que supone 71,4 CPUE (ejemplares capturados por unidad de esfuerzo) y 0,178 kg de BPUE. Se realizó un único transecto de pesca eléctrica en las orillas vadeables del Ibón recrecido de Ip, cubriendo un total de 140 metros.

Tabla 10. Recorridos de pesca eléctrica realizados durante los muestreos directos del Ibón recrecido de Ip.

Tipo de lance	Código	Esfuerzo
Pesca eléctrica	IPP22_S1PES1	140 m

La ubicación del transecto de muestreo de electropesca se puede observar en el mapa de la Figura 11 y en el boletín de campo del Anexo I, donde se presenta además la ubicación de las redes.

En la tabla siguiente se facilitan los resultados obtenidos de la única especie capturada en muestreo de pesca eléctrica.

BPUE Longitud Peso **CPUE** % **Biomasa Capturas** (g/ud. furcal media medio (ind/ud. esf.) **CPUE BPUE** (g) esf.) (mm) (g) Phoxinus 100 71,4 100,0 250 178,6 100,0 58 3 bigerri **Total** 100 71,4 100,0 250 100,0 178,6 58 3

Tabla 11. Resultados de la pesca eléctrica por especies

Figura 24. Composición de la asociación obtenida mediante pesca eléctrica

Todos los ejemplares capturados con la pesca eléctrica son piscardos, lo que responde al hecho de que se han realizado en zonas vadeables desde la orilla. Esta especie habita zonas poco profundas alimentándose de plancton y de pequeños moluscos y larvas, mientras la trucha adulta se mantiene fuera del radio efectivo de este tipo de electropesca.

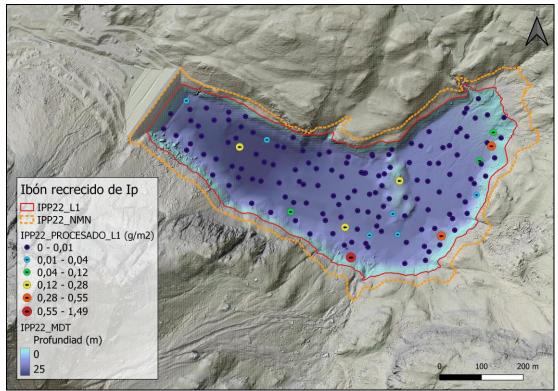
4.4. BIOMASA

4.4.1. Distribución y estimación de la biomasa de peces

A partir de los datos obtenidos mediante las dos técnicas de prospección (hidroacústica y muestreo directo), se integran los resultados para obtener las estimaciones de densidad y biomasa por especies para el conjunto del sistema (Tabla 12).

Tabla 12. Biomasa de peces por estratos (g/m²) estimada mediante acústica

Embalse	Sector	Estrato	Biomasa media (g/m²)	Biomasa máxima (g/m²)	Número de casos	Número de casos con valor 0	Desviación típica
IPP22	1	1	0,02	1	149	129	0,14
IPP22	1	2	7,79	262	149	115	33,27


La biomasa media del embalse se calcula sumando las biomasas de cada uno de los estratos y refiriéndolo a la superficie del embalse. De esta manera se obtiene una biomasa media de $1,35 \pm 0,22$ g/m², o lo que es lo mismo 13,5 kg/ha. Se trata de un valor bajo de biomasa, pero algo más alto de lo esperado en embalse oligotrófico de alta montaña.

En la Figura 25 se representa la distribución espacial de los valores de biomasa en las celdas de análisis para el único estrato considerado en este embalse. Al igual que en el caso de la densidad, se ha empleado el método de Jenks "*Natural breaks optimization*" para establecer los valores de corte de los datos de biomasa.

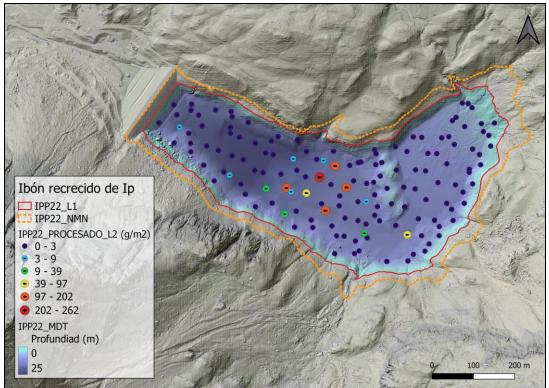

En el estrato superficial los valores de biomasa son dos órdenes de magnitud inferiores a los del estrato profundo y los valores más altos se agrupan en aguas someras y cercanas a las orillas. Sin embargo, y como consecuencia del mayor peso de los ejemplares de trucha común, en el estrato profundo se aprecia una concentración de biomasa en la zona central del embalse.

Figura 25. Celdas de análisis de hidroacústica y representación de la biomasa de peces en el estrato superior (UOW). Cada punto representa una celda de 50 m de longitud

Figura 26. Celdas de hidroacústica y representación de la biomasa de peces en el estrato profundo (LOW). Cada punto representa una celda de 50 metros

4.4.2. Comparativa con otros embalses de la cuenca del Ebro

En el diagrama de barras siguiente se presentan los resultados de biomasa obtenidos en Ibón recrecido de Ip, en comparación con otros embalses de la Demarcación Hidrográfica del Ebro cuyas poblaciones de peces se han evaluado con técnicas hidroacústicas de calidad científica y se dispone de datos cuantitativos de densidad y biomasa.

La línea roja representa el valor promedio de los embalses considerados. Como puede apreciarse, la biomasa en este embalse presenta un valor bajo en el contexto de los embalses estudiados en la cuenca del Ebro.

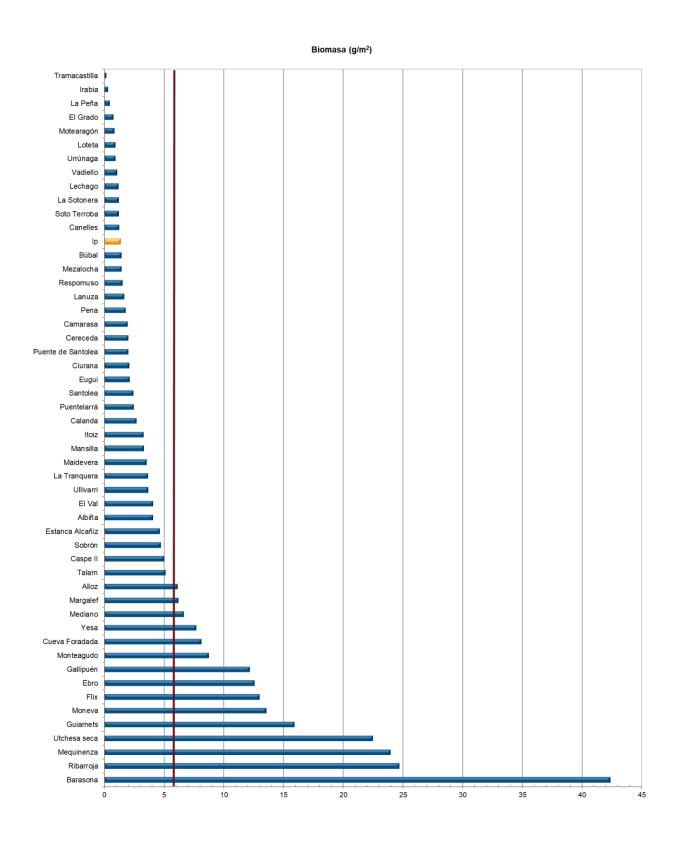


Figura 27. Comparación de la biomasa con otros embalses de la Demarcación Hidrográfica del Ebro

4.5. DENSIDAD Y BIOMASA POR ESPECIES

Para poder ofrecer una estimación de las densidades y biomasas por especies, es necesario aplicar la distribución de especies obtenidas mediante muestreo directo a las densidades y biomasas obtenidas mediante acústica.

En la Tabla 13 se ha calculado la densidad y biomasa relativas por especie, referidas a volumen (dam³) y superficie (m²) respectivamente, para el conjunto del embalse.

Tabla 13. Densidades (ind/dam³) y biomasas (g/m²) por especie

	Densidad media (ind/dam³)	Abundancia (%)	Abundancia Total (ind)	Biomasa media (g/m²)	Biomasa (%)	Peso total (kg)
Salmo trutta fario	0,02	1%	62	0,85	63%	190
Phoxinus bigerri	1,80	99%	5.325	0,50	37%	112
Total	1,83	100%	5.387	1,35	100%	302
Intervalo de Confianza (I.C)	0,29	/	865	0,22	/	48

En este cuadro se resumen las observaciones ya expuestas en cuanto a la densidad y biomasa de las especies, así como su importancia relativa en la asociación de peces del embalse. En términos absolutos se estima una población de unos 5.387 ± 865 peces con una biomasa de aproximadamente 302 ± 48 kilogramos.

Estos valores absolutos deben usarse con cautela. Es más apropiado trabajar con los valores de densidad y biomasa por unidad de volumen y superficie (respectivamente), que permiten comparar diferentes sistemas.

4.6. MUESTREOS INDIRECTOS: ADN AMBIENTAL

4.6.1. Muestras ambientales de agua

El proceso de filtración de las muestras de agua, así como el de extracción del ADN ambiental se completó sin incidencias.

Todas las muestras ambientales del agua del Ibón recrecido de Ip pasaron los controles de calidad, amplificando con éxito el marcador universal, es decir, confirmando la existencia de ADN ambiental en las muestras y la ausencia de inhibidores de la PCR.

4.6.2. Detección de trucha común mediante qPCR y estimaciones de biomasa.

Se ha detectado ADN de trucha común en las muestras ambientales del Ibón recrecido de Ip. Se obtuvo una recta patrón con un alto grado de ajuste (R²=0,999).

Figura 28. Recta patrón para la cuantificación de las muestras ambientales, representadas por los ciclos de amplificación (Ct) frente a la cantidad de ADN

Tabla 14. Concentración de Salmo trutta en las muestras del embalse Ibón recrecido de Ip.

Código	Concentración (ng/µL)
IPP_E1_S	393
IPP_E1_M	1.516
IPP_E1_F	1.330
IPP_PES_1_1	1.667
IPP_PES_1_2	2.582
IPP_PES_1_3	1.791
IPP_BEN_1_1	2.693
IPP_BEN_1_2	438
IPP_BEN_1_3	2.586

Se ha utilizado un método específico de alta resolución basado en la detección genética mediante ADN ambiental de moléculas de ADN de trucha en agua, con el cual se ha podido confirmar la presencia de trucha común en el Ibón recrecido de Ip.

Los resultados obtenidos mediante ADN ambiental se encuentran en concordancia con los resultados obtenidos en los muestreos directos, en los que se han obtenido ejemplares de esta especie.

4.6.3. Detección de anguila europea mediante qPCR y estimaciones de biomasa.

Tras los análisis, ninguna muestra de ADN ambiental resultó positivoa en ADN ambiental de anguila europea en el agua del Ibón recrecido de Ip. Se obtuvo una recta patrón con un alto grado de ajuste (R²=0,999).

Figura 29. Recta patrón para la cuantificación de las muestras ambientales, representadas por los ciclos de amplificación (Ct) frente a la cantidad de ADN.

A pesar de haber utilizado un método específico de alta resolución basado en la detección genética mediante ADN ambiental, no se ha podido detectar la presencia de anguila en el Ibón recrecido de Ip, confirmando en este caso los resultados obtenidos en los muestreos directos. Se concluye, con un alto grado de confianza, que la anguila no está presente en esta masa de agua.

Los resultados obtenidos mediante el análisis de ADN ambiental se encuentran en concordancia con los resultados obtenidos en los muestreos directos, ya que en éstos no se capturó ningún ejemplar de esta especie.

5. VALORACIÓN SEGÚN EL ÍNDICE QFBI

Aunque este método de muestreo se ha aplicado en una reducida población de embalses de la Península Ibérica, los resultados permiten una comparación objetiva y normalizada según el índice biótico sintético QFBI.

Este ejercicio es posible gracias al carácter sistemático de los muestreos, que proporciona información estandarizada sobre la densidad y biomasa de cada una de las especies. El mencionado índice permite a su vez comparar mediante una sola variable, la relación de la ictiocenosis con las características ambientales de cada masa de agua, tanto naturales como derivadas de presiones concretas, y también con la influencia del manejo hidráulico y su interacción con otros factores de presión.

Solamente utilizando indicadores que explícitamente se vinculen a la disponibilidad de hábitats (aguas litorales y abiertas, estratos de profundidad, sustratos y vegetación acuática, gradientes tróficos longitudinales...) será posible dar una salida práctica a la información relativa a los peces en los embalses, puesto que se podrá evaluar separadamente la incidencia que una determinada estrategia de explotación hidráulica pueda tener sobre la ictiofauna, descontando así este efecto de otras presiones, lo cual resulta fundamental en el proceso de planificación hidrológica.

Como se ha apuntado en el apartado de metodología, se ha aplicado el QFBI (*Quantitative Fish Biotic Index*) en una versión todavía experimental. Según esta metodología, la calidad del Ibón recrecido de Ip según los peces sería "Óptima". En la Tabla 15 se presentan los resultados de las diferentes métricas, así como del QFBI, obtenidos para el Ibón recrecido de Ip.

Tabla 15. Resultados del QFBI obtenidos para el embalse de Ip

Métrica	Embalse IPP22		
LOG_BIO	4,18		
LOG_BIO_native	4,18		
LOG_%_BIO_PISC_Exotic	0,00		
LOG_BIO_PISC_Exotic	0,00		
LOG_BIO_ciprin_native	2,88		
QFBI	-2,34		
Calidad	Óptimo		

Este resultado se explica por la combinación de valores bajos de biomasa y la dominancia de especies autóctonas en la demarcación. No obstante, en este caso se deberían tomar todas las especies como introducidas, y entonces el índice adoptaría un valor "Malo" pero estaría reflejando únicamente el aspecto de biodiversidad en su resultado.

6. CONCLUSIONES

La posibilidad de censar cuantitativamente las asociaciones de peces de los embalses ofrece evidentes ventajas sobre las técnicas más cualitativas, puesto que permiten responder a los requisitos de la DMA en este indicador, pero también completar el conocimiento limnológico, la incidencia potencial de los peces en el estado del ecosistema y orientar medidas de gestión de la pesca y de manejo de poblaciones.

Las especies detectadas en los muestreos realizados en el Ibón recrecido de Ip mediante electropesca y redes agalleras son autóctonas en la Demarcación Hidrográfica del Ebro: piscardo (*Phoxinus bigerri*) y trucha común (*Salmo trutta fario*). El piscardo es una especie que ha encontrado un hábitat propicio para su reproducción en la pequeña cuenca de drenaje al embalse y completa por lo tanto su ciclo vital.

No obstante, ninguna especie de pez debe tener la consideración de autóctona en este tipo de masas de agua de montaña que están geográficamente aisladas de las poblaciones de peces más cercanas. Su introducción con fines de pesca recreativa supone un nuevo factor de presión para el ecosistema lacustre, en el que la fauna acuática de vertebrados se restringe originalmente a anfibios y mamíferos. Tanto desde el punto de vista de la biodiversidad como de la calidad del agua, la presencia de peces constituye un factor negativo en este tipo de ecosistemas (Miró & Ventura 2013; 2015).

En relación con los valores de densidad y biomasa por especies, se obtienen las siguientes conclusiones:

- Densidad y biomasa de peces propias de sistemas oligotróficos, con valores muy bajos en relación a una escala compuesta por unos 50 casos estudiados en la DHE.
- Biocenosis compuesta por especies introducidas en la masa de agua, aunque consideradas autóctonas en la DHE. En términos de densidad, la asociación está claramente dominada por el piscardo que representa el 93,3 %. En términos de biomasa es la trucha común la especie más relevante (95,0 %).

La prospección mediante la técnica de mayor sensibilidad conocida (eDNA) ha ofrecido resultados coherentes con las capturas realizadas: En el caso de la trucha común (*Salmo trutta*) se ha detectado ADN de la especie, pero con la anguila (*Anguilla anguilla*) los resultados

son negativos. Se concluye en consecuencia que en este embalse se presentan dos (2) especies de peces, ambas introducidas artificialmente en la masa de agua.

La densidad media de peces, a partir de la interpolación de celdas de análisis de 50 m de longitud, es de $1,83 \pm 0,29$ ind/dam³, que es un valor muy bajo. La biomasa de peces obtenida en el embalse es de $1,35 \pm 0,22$ g/m², o lo que es lo mismo 13,5 kg/ha, que representa también un valor bajo de biomasa, propio de un sistema oligotrófico.

El índice de calidad QFBI ofrece en el embalse de Ip un valor "Óptimo", pero si se consideraran trucha común y piscardo como especies introducidas (traslocadas o alóctonas a escala local), el resultado sería "Malo".

En todo caso, la trucha ejerce una presión depredadora sobre el piscardo, contribuyendo a controlar la proliferación de esta especie que ejerce una incidencia negativa desde el punto de vista de la biodiversidad y de la calidad del agua, puesto que el piscardo supone una presión añadida sobre el zooplancton y el perifiton.

7. GLOSARIO Y ACRÓNIMOS

% BPUE: Biomasa por unidad de esfuerzo expresada en porcentaje.

% CPUE: Capturas por unidad de esfuerzo expresado como porcentaje.

ADN ambiental (eDNA): es el material genético presente en el medio, en este caso, en el agua, procedente de los organismos que transmiten este material genético meramente por su interacción con el medio. Por ejemplo, procedente de excreciones, gametos, mucus, escamas, etc.

Amplicón: fragmento del genoma amplificado mediante reacción en cadena de la polimerasa (PCR). Este fragmento puede variar en tamaño, dependiendo del marcador genético utilizado. Su composición en número de pares de bases y secuencia son conocidas.

BPUE: Biomasa por unidad de esfuerzo. El peso de las capturas obtenidas durante las pescas científicas, expresado en gramos, se normaliza a un esfuerzo de referencia, que corresponde a una red bentónica (45 m²) expuesta durante 12 horas.

Capturas: Número de individuos pescados.

CPUE: Capturas por unidad de esfuerzo. El número de capturas obtenidas durante las pescas científicas se normaliza a un esfuerzo de referencia, que corresponde a una red bentónica (45 m²) expuesta durante 12 horas.

Ecograma: Es una forma de representación del sonido que retorna a la ecosonda, en la que cada ping se dispone en el eje horizontal y la distancia en el vertical.

Índice de cobertura: Medida del esfuerzo de muestreo acústico que relaciona la longitud navegada con la raíz cuadrada de la superficie del embalse según la fórmula:

$$D_a = \frac{Long \ de \ muestreo \ ac\'ustico}{\sqrt[2]{Superficie \ embalse}}$$

L. furcal: Longitud furcal media en milímetros.

MBPUE12: Promedio de biomasa por unidad de esfuerzo (g/45m²/12h) en redes de 12 paños (luces de malla de 5 a 55 mm).

MBPUE4: Promedio de biomasa por unidad de esfuerzo (g/45m²/12h) en redes de 4 paños (luces de malla de 70 a 135 mm).

MCPUE12: Promedio de capturas por unidad de esfuerzo (ind/45m²/12h) en redes de 12 paños (luces de malla de 5 a 55 mm).

MCPUE4: Promedio de capturas por unidad de esfuerzo (ind/45m²/12h) en redes de 4 paños 0 (luces de malla de 70 a 135 mm).

Peso medio: expresado en g.

PF total: Peso fresco total de los peces capturados expresado en gramos.

Ping: Impulso acústico generado por la ecosonda; a efectos prácticos se puede considerar como una muestra de la columna de agua.

Plerocercoide: Último estadio larvario de diversos cestodos con ciclos de vida acuáticos.

Procercoide: Forma embrionaria alargada con un apéndice evaginable en un extremo y una dilatación esférica con 6 ganchos en el otro.

qPCR: (quantitative Polymerase Chain Reaction): Proceso de Reacción en Cadena de la Polimerasa que permite la cuantificación de la cantidad de ADN presente en las muestras a tiempo real mediante fluorescencia.

Talla acústica (*Target strength*, TS): Es la intensidad del sonido procedente de un blanco (pez en este caso) y se mide en decibelios (dB). Es una medida logarítmica de la proporción de la energía incidente que es devuelta por el blanco. Se utiliza una escala logarítmica porque el tamaño de los organismos acuáticos cubre varios órdenes de magnitud, desde el plancton hasta las ballenas. Para casi todos los peces, la TS está en el rango de -70 a -20 dB. Por ejemplo, si decimos que un blanco tiene 3 dB más que otro, es lo mismo que decir que refleja dos veces más energía. Un blanco de -20 dB, un atún o un siluro de gran talla quizás, produce un eco 10 000 veces más fuerte que un blanco de -60 dB, que podría corresponder por ejemplo a un alevín de boga de unos 4 cm de talla.

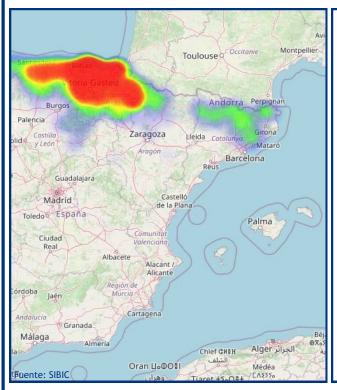
Transductor: Elemento primordial del sistema acústico, que convierte el impulso eléctrico en mecánico (sonido) y viceversa. Son piezas que van sumergidas y de cuyo diseño depende la arquitectura del haz acústico. Mediante la actuación de numerosos elementos piezo-eléctricos se consigue generar un haz tipo pistón, con un lóbulo central prominente y lóbulos laterales pequeños, de lo que depende la ratio señal/ruido de una ecosonda. Este es uno de los aspectos en los que se diferencian las ecosondas científicas de las ecosondas estándar pesqueras, y conlleva una considerable diferencia en sofisticación, que no se percibe en su justa medida en una apreciación puramente visual de un ecograma.

8. BIBLIOGRAFÍA

- CEN EN 14011:2003 Water quality Sampling of fish with electricity
- CEN EN 15910: 2014 Water quality Guidance on the estimation of fish abundance with mobile hydroacoustic methods.
- CEN EN 14757:2015 Water quality Sampling of fish with multi-mesh gillnets.
- CHE. 1996. Diagnóstico y gestión ambiental de embalses en el ámbito de la Cuenca Hidrográfica del Ebro.
- CHE. 2009. Guía de campo de Peces de la Cuenca del Ebro.
- CHE. 2015. Red de Seguimiento de Lagos 2015.
- CHE. 2016. Control del Estado de las Masas de Agua CEMAS. Informe de situación año 2016.
- Del Castillo, M. (2003). Morfometría de lagos. Una aplicación a los lagos del Pirineo (Doctoral dissertation, PhD. Thesis, University of Barcelona.
- Directiva 2006/44/CE del Parlamento Europeo y del Consejo, de 6 de septiembre de 2006, relativa a la calidad de las aguas continentales que requieren protección o mejora para ser aptas para la vida de los peces.
- Doadrio, I. 2001. *Atlas y libro rojo de los peces continentales de España*. Madrid, MMA. Dirección General de Conservación de la Naturaleza.
- Doadrio, I., S. Perea, P. Garzón-Heydt y J. L. González. 2011. *Ictiofauna continental española. Bases para su seguimiento*. DG Medio Natural y Política Forestal. MARM. 616 pp. Madrid.
- Fernandez, S., Sandin, M. M., Beaulieu, P. G., Clusa, L., Martinez, J. L., Ardura, A., & García-Vázquez, E. (2018). Environmental DNA for freshwater fish monitoring: insights for conservation within a protected area. PeerJ, 6, e4486.
- Fishbase. 2009. http://www.fishbase.org/search.php. Marzo, 2013.
- Gustavson MS, Collins PC, Finarelli JA, Egan D, Conchúir R, Wightman GD, King JJ, Gauthier DT, Whelan K, Carlsson JEL, Carlsson J. 2015. An eDNA assay for Irish Petromyzon marinus and Salmo trutta and field validation in running water. Journal of Fish Biology 87:1254 1262
- Jenks, George F. 1967: "The Data Model Concept in Statistical Mapping", an International Yearbook of Cartography no 7: pp. 186-190
- Frouzová J., Kubečka J., Balk H., Frouz J. (2005) Target strength of some European fish species and its dependence on fish body parameters Fisheries Research 75: 86-96.
- Love, R. H. 1977. Target strength of an individual fish at any aspect. *The Journal of the Acoustical Society of America* 62, 1397-1403.

- Miró A. & Ventura M. 2013. Historical use, fishing management and lake characteristics explain the presence of non-native trout in Pyrenean lakes: Implications for conservation. *Biological Conservation* 167, 17-24.
- Miró A. & Ventura M. 2015. Evidence of exotic trout mediated minnow invasion in Pyrenean high mountain lakes. *Biological Invasions* 17, 791-803.
- Poikane, S., Birk, S., Böhmer, J., Carvalho, L., de Hoyos, C., Gassner, H., Van de Bund, W. (2015). A hitchhiker's guide to European lake ecological assessment and intercalibration. *Ecological Indicators*, 52, 533-544.
- Real Decreto 817/2015, de 11 de septiembre, por el que se establecen los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental. BOE, 219, 12 de septiembre de 2015.
- SAIH Ebro. http://195.55.247.237/saihebro/index.php?url=/historicos/peticion. Noviembre 2020.

ANEXOS



ANEXO 1. ESPECIES PRESENTES

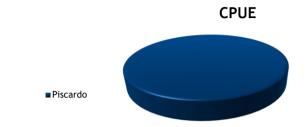
Embalse de IP

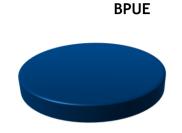
Piscardo

Phoxinus bigerri

El piscardo es un pez de pequeño tamaño que raramente alcanza los 140 mm de longitud total. La coloración es variable y suele presentar manchas oscuras que se disponen transversalmente. Durante la época de reproducción los machos, presentan tubérculos nupciales, y la base de las aletas, excepto la dorsal, se tiñen de rojo. Suelen vivir en los tramos altos de los ríos en aguas oxigenadas, con fondos pedregosos. Llega a formar grandes cardúmenes, que en la época de reproducción pueden estar compuestos sólo por ejemplares machos, desencadenándose la reproducción cuando en este cardumen se introducen las hembras. Son omnívoros aunque su dieta principal consiste en macroinvertebrados acuáticos.

El piscardo posee dos poblaciones bien definidas una en la vertiente atlántica y otra en la mediterránea. En la vertiente atlántica no se sabe para la mayoría de los ríos, con certeza, si es una especie autóctona ya que ha sido ampliamente introducida para favorecer el número de presas disponibles para la trucha (S. trutta) y existen pocos registros antiguos sobre su presencia. En esta vertiente sus poblaciones son abundantes. En la vertiente mediterránea, sin embargo, las poblaciones son autóctonas ya que existen registros antiguos sobre su presencia, antes de que se favoreciera a la especie como alimento para las truchas, y en esta vertiente sus poblaciones se encuentran amenazadas.

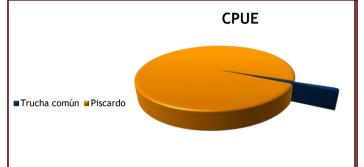


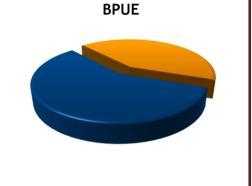

ANEXO 2. RESULTADOS DE LAS PESCAS

FICHA DE PESCA								
DATOS DE LA PESCA								
SISTEMA Ibón recrecido de Ip CÓDIGO IPP22_S1PES1								
UMT-X	708.500		UTM-Y		4.733.166			
RIQUEZA ESPECIES	1	1	Distancia (m) 140,0		0,0			
RESUMEN DE LAS PESCAS								
ESPECIE	CAPTURAS	CPUE	% CPUE	BIOMASA (g)	BPUE	% BPUE		
Piscardo	100	0,71	#¡REF!	250	1,79	#¡REF!		

RESULTADOS DETALLADOS DE LA PESCA							
NOMBRE COMÚN	NOMBRE CIENTÍFICO	L. furcal (mm)	Peso (g)	Numero Inc			
Piscardo	Phoxinus bigerri	75	6,2	1			
Piscardo	Phoxinus bigerri	54	2,2	1			
Piscardo	Phoxinus bigerri	76	6,6	1			
Piscardo	Phoxinus bigerri	65	4,6	1			
Piscardo	Phoxinus bigerri	60	3,0	1			
Piscardo	Phoxinus bigerri	58	2,4	1			
Piscardo	Phoxinus bigerri	65	3,8	1			
Piscardo	Phoxinus bigerri	66	4,0	1			
Piscardo	Phoxinus bigerri	58	,	1			
Piscardo	Phoxinus bigerri	62	3,0				
Piscardo		71	3,8	1			
	Phoxinus bigerri		5,2	1			
Piscardo	Phoxinus bigerri	53	2,4	1			
Piscardo	Phoxinus bigerri	67	3,8	1			
Piscardo	Phoxinus bigerri	65	3,8	1			
Piscardo	Phoxinus bigerri	70	4,2	1			
Piscardo	Phoxinus bigerri	64	3,4	1			
Piscardo	Phoxinus bigerri	60	2,0	1			
Piscardo	Phoxinus bigerri	62	3,0	1			
Piscardo	Phoxinus bigerri	57	2,4	1			
Piscardo	Phoxinus bigerri	54	2,2	1			
Piscardo	Phoxinus bigerri	56	2,2	1			
Piscardo	Phoxinus bigerri	59	2,4	1			
Piscardo	Phoxinus bigerri	62	3,2	1			
Piscardo	Phoxinus bigerri	55	1,4	1			
Piscardo	Phoxinus bigerri	64	3,4	1			
Piscardo	Phoxinus bigerri	46	1,0	1			
Piscardo	Phoxinus bigerri	62	2,4	1			
Piscardo	Phoxinus bigerri	61	2,0	1			
Piscardo	Phoxinus bigerri	64	2,4	1			
Piscardo	Phoxinus bigerri	63	3,8	1			
Piscardo	Phoxinus bigerri	64	2,4	1			
Piscardo	Phoxinus bigerri	62	2,4	1			
Piscardo	Phoxinus bigerri	57					
Piscardo	Phoxinus bigerri	63	2,0	1			
	3		2,8	1			
Piscardo	Phoxinus bigerri	64	3,4	1			
Piscardo	Phoxinus bigerri	59	2,0	1			
Piscardo	Phoxinus bigerri	50	1,0	1			
Piscardo	Phoxinus bigerri	47	1,0	1			
Piscardo	Phoxinus bigerri	45	1,0	1			
Piscardo	Phoxinus bigerri	38	0,5	1			
Piscardo	Phoxinus bigerri	72	4,0	1			
Piscardo	Phoxinus bigerri	52	1,2	11			
Piscardo	Phoxinus bigerri	60	2,2	1			
Piscardo	Phoxinus bigerri	46	1,0	1			
Piscardo	Phoxinus bigerri	47	1,0	1			
Piscardo	Phoxinus bigerri	77	5,8	1			
Piscardo	Phoxinus bigerri	68	3,8	1			
Piscardo	Phoxinus bigerri	84	9,8	1			
Piscardo	Phoxinus bigerri	67	4,6	1			
Piscardo	Phoxinus bigerri	65	2,0	1			

	RESULTADOS DETALLADOS D	DE LA PESCA		
NOMBRE COMÚN	NOMBRE CIENTÍFICO	L. furcal (mm)	Peso (g)	Numero Ind
Piscardo	Phoxinus bigerri	68	3,2	1
Piscardo	Phoxinus bigerri	64	3,4	1
Piscardo	Phoxinus bigerri	68	3,8	1
Piscardo	Phoxinus bigerri	60	2,4	1
Piscardo	Phoxinus bigerri	52	1,6	1
Piscardo	Phoxinus bigerri	67	3,4	1
Piscardo	Phoxinus bigerri	52	1,2	1
Piscardo	Phoxinus bigerri	51	1,0	1
Piscardo	Phoxinus bigerri	70	3,6	1
Piscardo	Phoxinus bigerri	50	0,8	1
Piscardo	Phoxinus bigerri	54	1,4	1
Piscardo	Phoxinus bigerri	55	0,8	1
Piscardo	Phoxinus bigerri	66	3,0	1
Piscardo	Phoxinus bigerri	65	3,2	1
Piscardo	Phoxinus bigerri	62	2,6	1
Piscardo	Phoxinus bigerri	52	1,4	1
Piscardo	Phoxinus bigerri	54	2,0	1
Piscardo	Phoxinus bigerri	54	2,0	1
Piscardo	Phoxinus bigerri	47		1
Piscardo	Phoxinus bigerri	57	1,0	
Piscardo	Phoxinus bigerri	58	2,2	1
			3,0	1
Piscardo	Phoxinus bigerri	58	2,4	1
Piscardo	Phoxinus bigerri	59	2,4	1
Piscardo	Phoxinus bigerri	42	0,5	1
Piscardo	Phoxinus bigerri	60	3,2	1
Piscardo	Phoxinus bigerri	58	2,8	1
Piscardo	Phoxinus bigerri	58	3,0	1
Piscardo	Phoxinus bigerri	66	3,2	1
Piscardo	Phoxinus bigerri	52	2,0	1
Piscardo	Phoxinus bigerri	57	2,6	1
Piscardo	Phoxinus bigerri	47	1,0	1
Piscardo	Phoxinus bigerri	49	1,0	1
Piscardo	Phoxinus bigerri	62	3,0	1
Piscardo	Phoxinus bigerri	53	2,2	1
Piscardo	Phoxinus bigerri	59	2,6	1
Piscardo	Phoxinus bigerri	55	1,8	1
Piscardo	Phoxinus bigerri	54	2,0	1
Piscardo	Phoxinus bigerri	52	1,8	1
Piscardo	Phoxinus bigerri	52	1,2	1
Piscardo	Phoxinus bigerri	35	0,5	1
Piscardo	Phoxinus bigerri	54	1,4	1
Piscardo	Phoxinus bigerri	58	2,4	1
Piscardo	Phoxinus bigerri	57	2,4	1
Piscardo	Phoxinus bigerri	45	1,0	1
Piscardo	Phoxinus bigerri	34	0,5	1
Piscardo	Phoxinus bigerri	37	0,5	1
Piscardo	Phoxinus bigerri	33	0,5	1
Piscardo	Phoxinus bigerri	37	0,5	1
Piscardo	Phoxinus bigerri	54	2,4	1
Piscardo	Phoxinus bigerri	52	2,2	1




			FICHA DE PESCA			
			DATOS DE LA RED			
SISTEMA	Ibón recre	cido de Ip	CÓDIGO DE RED		IPP22_S	S1EPL1
UTM-X	708	160	UTM-Y		4732	989
TIPO DE RED	Epipelágica	(16x6) 40	SISTEMA DE REFERE	NCIA	UTM ETR	S89 H30
INICIO	24-6-22	10:30	FIN		24-6-22	18:40
PROFUNDIDAD	22	2	PROFUNDIDAD DE L	A RED	0	
RIQUEZA ESPECIES	1		ESFUERZO APLICADO	-	3,0	6
			RESUMEN DE LAS PESCA			
ESPECIE	CAPTURAS	CPUE	% CPUE	BIOMASA (g)	BPUE	% BPUE
Trucha común	1	0,28	100%	500	138,89	100%
Total	1	0,28	100%	500	138,89	100%
■Trucha común						
NOMBRE COM			LTADOS DETALLADOS DE LE CIENTÍFICO	LA PESCA L. furcal (mm)	Peso (g)	Numero In

	FICHA DE PESCA						
	DATOS DE LA RED						
SISTEMA	Ibón recrecido de Ip	CÓDIGO DE RED	IPP22_S1BEN1				
UTM-X	708251	UTM-Y	4732760				
TIPO DE RED	Bentónica (16x1.5) 40m	SISTEMA DE REFERENCIA	UTM ETRS89 H30				
INICIO	24-6-22 10:57	FIN	24-6-22 18:30				
PROFUNDIDAD	8	PROFUNDIDAD DE LA RED	7				
RIQUEZA ESPECIES	2	ESFUERZO APLICADO	0,8				
		RESUMEN DE LAS PESCAS					

RESUMEN DE LAS FESCAS							
ESPECIE	CAPTURAS	CPUE	% CPUE	BIOMASA (g)	BPUE	% BPUE	
Trucha común	1	1,25	1%	300	375,00	58%	
Piscardo	73	91,25	99%	219	273,63	42%	
Total	74	92 50	100%	519	648 63	100%	

RESULTADOS DETALLADOS DE LA PESCA							
NOMBRE COMÚN	NOMBRE CIENTÍFICO	L. furcal (mm)	Peso (g)	Numero Ind			
Trucha común	Salmo trutta fario	300	300,0	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			
Piscardo	Phoxinus bigerri	60	2,5	1			

RESULTADOS DETALLADOS DE LA PESCA						
NOMBRE COMÚN	NOMBRE CIENTÍFICO	L. furcal (mm)	Peso (g)	Numero Ind		
Piscardo	Phoxinus bigerri	60	2,5	1		
Piscardo	Phoxinus bigerri	60	2,5	1		
Piscardo	Phoxinus bigerri	60	2,5	1		
Piscardo	Phoxinus bigerri	60	2,5	1		
Piscardo	Phoxinus bigerri	60	2,5	1		
Piscardo	Phoxinus bigerri	60	2,5	1		
Piscardo	Phoxinus bigerri	60	2,5	1		
Piscardo	Phoxinus bigerri	60	2,5	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		
Piscardo	Phoxinus bigerri	68	3,8	1		

ANEXO 3. CELDAS DEL MUESTREO HIDROACÚSTICO

ESTRATO	SEGMENTO	UTM X (H30)	UTM Y (30)	DENSIDAD (ind/dam3)	BIOMASA (g/m2)
1	1	708562,2882	4733099,457	0	0
1	2	708555,0546	4733050,476	0	0
1	3	708539,8479	4733002,533	0	0
1	4	708518,2492	4732958,631	0	0
1	5	708496,6721	4732913,463	0,75	0,04
1	6	708474,1033	4732869,099	0	0
1	7	708444,5603	4732828,782	0	0
1	8	708408,9765	4732793,363	0	0
1	9	708374,6799	4732756,282	0	0
1	10	708325,2853	4732748,857	0,02	0
1	11	708329,0634	4732799,434	0	0
1	12	708365,6726	4732830,216	0	0
1	13	708381,0739	4732877,742	0	0
1	14	708407,5184	4732920,522	0	0
1	15	708432,7884	4732962,833	0	0
1	16	708450,5069	4733009,585	0	0
1	17	708473,4605	4733053,949	0	0
1	18	708493,4657	4733098,236	0	0
1	19	708500,9811	4733144,68	0,01	0
1	20	708467,8457	4733111,024	0,02	0
1	21	708449,6809	4733064,681	0	0
1	22	708416,3565	4733027,218	0	0
1	23	708384,2811	4732989,359	0	0
1	24	708354,8942	4732949,036	0,01	0
1	25	708326,9698	4732907,49	0	0
1	26	708297,0078	4732868,005	0,32	0,02
1	27	708269,5294	4732826,051	0	0
1	28	708237,3458	4732788,189	0	0
1	29	708196,6267	4732763,22	29,51	1,49
1	30	708181,2644	4732792,435	0	0
1	31	708211,9489	4732831,096	0	0
1	32	708237,5324	4732872,571	0	0
1	33	708255,4372	4732918,905	0	0
1	34	708276,5491	4732964,058	0	0
1	35	708287,407	4733010,603	0,03	0
1	36	708247,2626	4733010,671	0	0
1	37	708231,3457	4732966,097	0	0
1	38	708205,5435	4732922,915	0,26	0,01
1	39	708167,8226	4732890,4	0,06	0
1	40	708135,8726	4732852,124	0	0
1	41	708098,9781	4732819,635	0	0
1	42	708064,394	4732851,672	0	0
1	43	708090,2067	4732893,998	0	0
1	44	708118,0461	4732935,963	0	0
1	45	708151,0083	4732973,002	0	0
1	46	708121,4587	4733010,693	0	0
1	47	708095,745	4732990,412	0	0
1	48	708073,6695	4732945,653	0,08	0
1	49	708039,9613	4732908,602	0	0
=	· -		,	-	-

ESTRATO	SEGMENTO	UTM X (H30)	UTM Y (30)	DENSIDAD (ind/dam3)	BIOMASA (g/m2)
1	50	708005,4015	4732871,515	0,02	0
1	51	707959,869	4732893,465	0	0
1	52	707982,0507	4732946,707	0	0
1	53	708011,285	4732986,179	0	0
1	54	708036,4105	4733027,64	0,08	0
1	55	707996,152	4733045,935	0,53	0,03
1	56	707970,6997	4733011,245	0	0
1	57	707935,4786	4732976,262	0	0
1	58	707905,5241	4732935,924	0	0
1	59	707866,7928	4732961,479	0,02	0
1	60	707874,9233	4732999,883	0	0
1	61	707903,8508	4733039,756	0,02	0
1	62	707934,9503	4733077,161	0	0
1	63	707905,1509	4733112,311	0,02	0
1	64	707870,1874	4733093,019	0	0
1	65	707840,2348	4733054,804	0,01	0
1	66	707804,5737	4733021,086	0,01	0
1	67	707779,5567	4733056,381	0	0
1	68	707814,7576	4733091,774	0,01	0
1	69	707812,5255	4733118,85	0,05	0
1	70	707749,8286	4733072,015	0	0
1	71	707766,6085	4733108,144	0,02	0
1	72	707804,0281	4733139,792	0,51	0,03
1	73	, 707851,5925	4733122,148	0,02	0
1	74	707832,6258	4733079,173	0,04	0
1	75	707813,7817	4733036,202	0,27	0,01
1	76	707845,351	4733010,864	0	0
1	77	707922,6113	4733050,08	0,02	0
1	78	707904,9468	4733093,22	0	0
1	79	707945,0027	4733102,061	0	0
1	80	707962,9532	4733063,587	0	0
1	81	707931,1959	4733028,708	3,49	0,18
1	82	707913,3463	4732982,387	0,04	0
1	83	707928,4389	4732955,276	0	0
1	84	707961,8646	4732951,613	0	0
1	85	707989,9555	4732992,318	0,01	0
1	86	708021,0166	4733030,989	0	0
1	87	708058,9106	4733051,215	0	0
1	88	708082,3074	4733019,696	0,05	0
1	89	708064,1025	4732973,775	0	0
1	90	708025,434	4732942,511	0	0
1	91	708052,9514	4732872,947	2,34	0,12
1	92	708059,9852	4732895,211	0,02	0
1	93	708083,4665	4732938,745	0	0
1	94	708114,2502	4732976,553	0	0
1	95	708144,5145	4733016,901	0	0
1	96	708190,3103	4733004,709	0	0
1	97	708174,8017	4732957,18	0	0
1	98	708155,0823	4732911,213	0	0

ESTRATO SEGMENTO UTM X (H30) UTM Y (30) DENSIDAD (ind/dam3) BIOMASA 1 99 708129,795 4732868,058 0,05 0 1 100 708153,7105 4732820,438 0 0 1 101 708189,8276 4732860,019 0 0 1 102 708189,8276 4732906,747 0 0 1 103 708227,1991 4732965,539 0 0 1 104 708186,429 4732990,175 0 0 1 105 708221,7473 4732967,497 0,17 0,0 1 106 708248,5192 4733007,319 0 0 1 106 708248,5192 4733022,691 0 0 1 107 708294,6154 4733037,249 0 0 1 108 708341,3424 4733037,249 0 0 1 109 708383,2428 4733031,145 0 0	1 4 2
1 100 708153,7105 4732820,438 0 0 1 101 708172,8849 4732860,019 0 0 1 102 708189,8276 4732906,747 0 0 1 103 708227,1991 4732965,539 0 0 1 104 708186,429 4732990,175 0 0 1 105 708221,7473 4732967,497 0,17 0,0 1 106 708248,5192 4733007,319 0 0 1 107 708294,6154 4733022,691 0 0 1 108 708341,3424 4733037,249 0 0 1 109 708383,2428 4733037,249 0 0 1 110 708363,7695 4733031,145 0 0 1 111 708363,7695 4733031,145 0 0 1 111 708312,7863 4732991,299 0 0 1 111 708288,2947 4732904,201 0 0 1	1 4 2
1 101 708172,8849 4732860,019 0 0 1 102 708189,8276 4732906,747 0 0 1 103 708227,1991 4732965,539 0 0 1 104 708186,429 4732990,175 0 0 1 105 708221,7473 4732967,497 0,17 0,0 1 106 708248,5192 4733007,319 0 0 1 107 708294,6154 4733022,691 0 0 1 108 708341,3424 4733037,249 0 0 1 109 708383,2428 4733037,249 0 0 1 109 708383,2428 4733031,145 0 0 1 110 708363,7695 4733031,145 0 0 1 111 708312,7863 4732991,299 0 0 1 112 708312,7863 4732947,344 4,85 0,2 1 113 708288,2947 4732904,201 0 0 1 <td>1 4 2</td>	1 4 2
1 102 708189,8276 4732906,747 0 0 1 103 708227,1991 4732965,539 0 0 1 104 708186,429 4732990,175 0 0 1 105 708221,7473 4732967,497 0,17 0,0 1 106 708248,5192 4733007,319 0 0 1 107 708294,6154 4733022,691 0 0 1 108 708341,3424 4733037,249 0 0 1 109 708383,2428 4733065,645 0 0 1 110 708363,7695 4733031,145 0 0 1 111 708363,7695 4732991,299 0 0 1 111 708312,7863 4732947,344 4,85 0,2 1 113 708288,2947 4732904,201 0 0 1 114 708262,9308 4732860,62 0,04 0 1 115 708241,3299 4732816,72 0,41 0,0 <t< td=""><td>1 4 2</td></t<>	1 4 2
1 103 708227,1991 4732965,539 0 0 1 104 708186,429 4732990,175 0 0 1 105 708221,7473 4732967,497 0,17 0,0 1 106 708248,5192 4733007,319 0 0 1 107 708294,6154 4733022,691 0 0 1 108 708341,3424 4733037,249 0 0 1 109 708383,2428 4733065,645 0 0 1 110 708363,7695 4733031,145 0 0 1 111 708363,7695 4732991,299 0 0 1 111 708312,7863 4732947,344 4,85 0,2 1 113 708288,2947 4732904,201 0 0 1 114 708262,9308 473280,662 0,04 0 1 115 708241,3299 4732816,72 0,41 0,0 1 116 708198,6655 4732799,74 0 0 <td>1 4 2</td>	1 4 2
1 104 708186,429 4732990,175 0 0 1 105 708221,7473 4732967,497 0,17 0,0 1 106 708248,5192 4733007,319 0 0 1 107 708294,6154 4733022,691 0 0 1 108 708341,3424 4733037,249 0 0 1 109 708383,2428 4733065,645 0 0 1 110 708363,7695 4733031,145 0 0 1 111 708336,1959 4732991,299 0 0 1 112 708312,7863 4732947,344 4,85 0,2 1 113 708288,2947 4732904,201 0 0 1 114 708262,9308 4732860,62 0,04 0 1 115 708241,3299 4732816,72 0,41 0,0 1 116 708198,6655 4732799,74 0 0	1 4 2
1 105 708221,7473 4732967,497 0,17 0,0 1 106 708248,5192 4733007,319 0 0 1 107 708294,6154 4733022,691 0 0 1 108 708341,3424 4733037,249 0 0 1 109 708383,2428 4733065,645 0 0 1 110 708363,7695 4733031,145 0 0 1 111 708336,1959 4732991,299 0 0 1 112 708312,7863 4732947,344 4,85 0,2 1 113 708288,2947 4732904,201 0 0 1 114 708262,9308 4732860,62 0,04 0 1 115 708241,3299 4732816,72 0,41 0,0 1 116 708198,6655 4732799,74 0 0	1 4 2
1 106 708248,5192 4733007,319 0 0 1 107 708294,6154 4733022,691 0 0 1 108 708341,3424 4733037,249 0 0 1 109 708383,2428 4733065,645 0 0 1 110 708363,7695 4733031,145 0 0 1 111 708336,1959 4732991,299 0 0 1 112 708312,7863 4732947,344 4,85 0,2 1 113 708288,2947 4732904,201 0 0 1 114 708262,9308 4732860,62 0,04 0 1 115 708241,3299 4732816,72 0,41 0,0 1 116 708198,6655 4732799,74 0 0	4
1 107 708294,6154 4733022,691 0 0 1 108 708341,3424 4733037,249 0 0 1 109 708383,2428 4733065,645 0 0 1 110 708363,7695 4733031,145 0 0 1 111 708336,1959 4732991,299 0 0 1 112 708312,7863 4732947,344 4,85 0,2 1 113 708288,2947 4732904,201 0 0 1 114 708262,9308 4732860,62 0,04 0 1 115 708241,3299 4732816,72 0,41 0,0 1 116 708198,6655 4732799,74 0 0	4
1 108 708341,3424 4733037,249 0 0 1 109 708383,2428 4733065,645 0 0 1 110 708363,7695 4733031,145 0 0 1 111 708336,1959 4732991,299 0 0 1 112 708312,7863 4732947,344 4,85 0,2 1 113 708288,2947 4732904,201 0 0 1 114 708262,9308 4732860,62 0,04 0 1 115 708241,3299 4732816,72 0,41 0,0 1 116 708198,6655 4732799,74 0 0	4
1 109 708383,2428 4733065,645 0 0 1 110 708363,7695 4733031,145 0 0 1 111 708336,1959 4732991,299 0 0 1 112 708312,7863 4732947,344 4,85 0,2 1 113 708288,2947 4732904,201 0 0 1 114 708262,9308 4732860,62 0,04 0 1 115 708241,3299 4732816,72 0,41 0,0 1 116 708198,6655 4732799,74 0 0	4
1 110 708363,7695 4733031,145 0 0 1 111 708336,1959 4732991,299 0 0 1 112 708312,7863 4732947,344 4,85 0,2 1 113 708288,2947 4732904,201 0 0 1 114 708262,9308 4732860,62 0,04 0 1 115 708241,3299 4732816,72 0,41 0,0 1 116 708198,6655 4732799,74 0 0	4 2
1 111 708336,1959 4732991,299 0 0 1 112 708312,7863 4732947,344 4,85 0,2 1 113 708288,2947 4732904,201 0 0 1 114 708262,9308 4732860,62 0,04 0 1 115 708241,3299 4732816,72 0,41 0,0 1 116 708198,6655 4732799,74 0 0	2
1 112 708312,7863 4732947,344 4,85 0,2 1 113 708288,2947 4732904,201 0 0 1 114 708262,9308 4732860,62 0,04 0 1 115 708241,3299 4732816,72 0,41 0,0 1 116 708198,6655 4732799,74 0 0	2
1 113 708288,2947 4732904,201 0 0 1 114 708262,9308 4732860,62 0,04 0 1 115 708241,3299 4732816,72 0,41 0,0 1 116 708198,6655 4732799,74 0 0	2
1 114 708262,9308 4732860,62 0,04 0 1 115 708241,3299 4732816,72 0,41 0,0 1 116 708198,6655 4732799,74 0 0	2
1 115 708241,3299 4732816,72 0,41 0,0 1 116 708198,6655 4732799,74 0 0	2
1 116 708198,6655 4732799,74 0 0	
1 117 708182,7795 4732835,73 5,52 0,2	
1 118 708212,6887 4732875,635 0 0	
1 119 708241,2015 4732915,086 0,12 0,0	
1 120 708263,3952 4732959,427 0 0	
1 121 708290,476 4732979,75 0,1 0	
1 122 708270,8536 4732935,487 0 0	
1 123 708274,3948 4732885,975 0,07 0	
1 124 708258,3742 4732838,853 0,17 0,0	
1 125 708232,4022 4732796,944 0 0	
1 126 708308,3241 4732818,317 0,39 0,0	2
1 127 708325,1945 4732863,342 0 0	
1 128 708355,4336 4732903,69 0 0	
1 129 708380,1508 4732946,407 0 0	
1 130 708405,6652 4732989,581 0 0	
1 131 708431,7373 4733031,916 0 0	
1 132 708457,4461 4733072,974 0,01 0	
1 133 708473,1641 4733121,366 0 0	
1 134 708522,6403 4733105,897 0 0	
1 135 708536,6678 4733063,915 1,28 0,0	6
1 136 708521,9334 4733038,884 0 0	
1 137 708503,9003 4732995,512 1,58 0,0	8
1 138 708483,0629 4732951,634 0 0	
1 139 708455,1784 4732911,778 0,1 0	
1 140 708432,4662 4732866,999 0,01 0	
1 141 708396,762 4732832,854 0 0	
1 142 708372,1394 4732789,707 0 0	
1 143 708382,9677 4732776,884 0 0	
1 144 708412,604 4732814,669 10,99 0,5	5
1 145 708439,361 4732856,603 0 0	
1 146 708469,6204 4732896,53 0 0	
1 147 708491,0841 4732940,85 0 0	

ESTRATO	SEGMENTO	UTM X (H30)	UTM Y (30)	DENSIDAD (ind/dam3)	BIOMASA (g/m2)
1	148	708507,7706	4732987,57	0	0
1	149	708532,2687	4733030,714	9,17	0,46
2	1	708559,2201	4733082,992	0	0
2	2	708550,0144	4733027,66	0	0
2	3	708525,8761	4732982,915	0	0
2	4	708506,5245	4732937,058	0	0
2	5	708486,2968	4732890,353	0	0
2	6	, 708459,1885	4732849,209	0	0
2	7	708425,5376	4732812,481	0	0
2	8	708391,2689	4732775,567	0	0
2	9	708349,9696	4732751,913	0	0
2	10	708299,0307	4732750,856	2,1	2,65
2	11	708348,4551	4732814,925	1,12	97,07
2	12	, 708375,4397	4732853,13	0	0
2	13	708393,612	4732899,262	0	0
2	14	708422,64	4732940,074	0	0
2	15	708444,1646	4732985,096	0	0
2	16	708462,2278	4733031,558	0	0
2	17	708487,3045	4733074,541	0	0
2	18	708504,9284	4733119,79	0	0
2	19	708481,662	4733130,903	0	0
2	20	708457,541	4733088,571	0	0
2	21	708431,453	4733047,591	0	0
2	22	708398,2905	4733010,189	0	0
2	23	708368,3039	4732970,459	0	0
2	24	708340,2149	4732928,941	0	0
2	25	708310,412	4732889,35	0	0
2	26	708281,6457	4732848,257	1,12	2,24
2	27	708251,5687	4732807,403	0	0
2	28	708220,5891	4732769,833	0	0
2	29	708172,8143	4732769,583	0	0
2	30	708195,6237	4732811,475	0	0
2	31	708229,2272	4732849,001	0	0
2	32	708249,5496	4732894,53	1,05	8,52
2	33	708267,1185	4732940,854	0	0
2	34	708286,8378	4732988,155	0	0
2	35	708269,2115	4733019,069	0	0
2	36	708236,5527	4732989,396	0	0
2	37	708218,792	4732944,266	0	0
2	38	708185,3044	4732908,078	0,91	0,42
2	39	708150,3053	4732872,811	2,63	133,51
2	40	708120,1028	4732832,02	0	0
2	41	708076,229	4732833,155	0	0
2	42	708079,8055	4732871,432	0	0
2	43	708104,5727	4732914,994	2,11	55,18
2	44	708136,5364	4732953,081	4,18	261,72
2	45	708146,0781	4732993,017	1,32	4,4
2	46	708105,1231	4733014,559	0,5	0,03
2	47	708081,5202	4732969,631	0	0

ESTRATO	SEGMENTO	UTM X (H30)	UTM Y (30)	DENSIDAD (ind/dam3)	BIOMASA (g/m2)
2	48	708056,4464	4732927,272	2,67	201,99
2	49	708021,7551	4732890,748	0	0
2	50	707981,5747	4732882,191	0	0
2	51	707957,1564	4732911,979	0	0
2	52	707999,8508	4732964,438	0	0
2	53	708024,2604	4733007,089	0	0
2	54	708019,9882	4733040,106	0	0
2	55	707981,0644	4733034,755	0	0
2	56	707952,0531	4732994,956	0	0
2	57	707919,203	4732957,977	0,52	3,5
2	58	707881,4972	4732944,271	0	0
2	59	707856,4979	4732981,955	0	0
2	60	707891,5127	4733017,544	0	0
2	61	707920,9465	4733058,288	0	0
2	62	707924,874	4733098,266	0,89	0,55
2	63	707884,98	4733114,55	1,71	3,01
2	64	707852,8606	4733076,447	0	0
2	65	707824,517	4733034,324	0	0
2	66	707784,7361	4733035,129	0	0
2	67	707798,402	4733073,153	0,78	7,79
2	68	707825,5057	4733113,45	0	0
2	69	707791,2183	4733102,737	0	0
2	70	707748,0071	4733083,531	0	0
2	71	707784,2047	4733126,391	0	0
2	72	707826,9642	4733128,444	0	0
2	73	707844,2339	4733101,953	0	0
2	74	707819,798	4733101,535	0,73	0,02
2	75	707825,4302	4733014,044	0	0
2	76	707863,2752	4733027,743	0	0
2	70 77	707920,5522	4733072,482	0	0
2	77 78	707922,7326	4733110,873	1,36	0,1
2	78 79	707963,7894	4733110,873	0	0
2	80	707942,6663	4733049,249	0	0
2	81	707925,1246	4733045,245	0	0
2	82	707905,0959	4732965,411	0	0
2	83	707905,8959	4732935,411	0	0
2	84	707943,8833	4732969,136	0	0
2	85	708005,7299	4732909,130	0	0
2	86	708005,7255	4733050,721	0	0
2	87	708083,4116	4733030,721	0	0
2	88		4733042,904		9,36
2	89	708072,7555		0,42 0	9,36
2	90	708043,0022	4732960,591 4732925 706		
2	90 91	708007,3601	4732925,706	0,49	27,81 25.07
		708052,303	4732864,813	1,44	35,97
2	92	708067,6396	4732918,361	2,11	8,31
2	93	708102,7254	4732954,019	0,61	0,03
2	94	708129,5817	4732995,688	0,58	0,07
2	95	708170,1029	4733015,215	0	0
2	96	708178,4987	4732982,456	1,59	4,98

ESTRATO	SEGMENTO	UTM X (H30)	UTM Y (30)	DENSIDAD (ind/dam3)	BIOMASA (g/m2)
2	97	708163,9861	4732935,324	0,79	0,06
2	98	708141,3119	4732889,224	0	0
2	99	708116,2903	4732850,3	0,96	0,73
2	100	708166,2526	4732835,866	0	0
2	101	708183,6728	4732884,431	0,94	0,31
2	102	708201,3863	4732928,692	1,81	119,1
2	103	708209,4126	4732981,375	1,83	2,22
2	104	708174,1	4732980,2	2,33	127,55
2	105	708230,2055	4732988,16	0	0
2	106	708272,9391	4733009,055	0	0
2	107	708319,7051	4733025,859	0	0
2	108	708362,9723	4733049,972	0	0
2	109	708383,5819	4733048,693	0	0
2	110	708347,7251	4733014,744	0	0
2	111	, 708322,2587	4732969,971	0	0
2	112	708299,7137	4732926,42	0	0
2	113	708276,3159	4732882,332	0	0
2	114	708248,8692	4732840,411	0	0
2	115	708223,0777	4732799,853	0	0
2	116	708177,6942	4732812,191	0	0
2	117	708197,8792	4732854,948	0,96	1,11
2	118	708229,1873	4732894,116	2,04	0,83
2	119	708250,3217	4732938,258	0	0
2	120	708272,3604	4732983,117	0	0
2	121	708282,9713	4732955,737	0	0
2	122	708269,7321	4732910,699	0	0
2	123	708269,7843	4732861,649	1,07	0,98
2	124	708244,4889	4732818,505	1,06	39,04
2	125	708231,9412	4732776,066	0	0
2	126	708320,6846	4732837,04	0	0
2	127	708342,1146	4732881,97	0	0
2	128	708367,6287	4732924,899	0	0
2	129	708392,841	4732968,042	0	0
2	130	708419,6959	4733009,701	0	0
2	131	708449,0162	4733050,311	0	0
2	132	708466,4946	4733096,589	0	0
2	133	708495,4458	4733129,852	0	0
2	134	708527,6667	4733081,372	0	0
2	135	708532,4904	4733062,478	0	0
2	136	708506,3018	4733020,494	0	0
2	137	708498,3429	4732971,902	0	0
2	138	708464,8478	4732934,656	0	0
2	139	708443,8056	4732890,216	0	0
2	140	708414,3919	4732849,959	0	0
2	141	708383,0842	4732812,434	0	0
2	142	708363,1622	4732768,05	0	0
2	143	708401,1137	4732792,915	0	0
2	144	708425,8106	4732834,408	0	0
2	145	708455,9028	4732875,809	0	0
_	113	, 00 100,5020	., 525, 5,665	Ü	•

ESTRATO	SEGMENTO	UTM X (H30)	UTM Y (30)	DENSIDAD (ind/dam3)	BIOMASA (g/m2)
2	146	708483,3836	4732917,097	0	0
2	147	708498,2952	4732964,52	0	0
2	148	708523,053	4733007,483	0	0
2	149	708545,7347	4733053,24	0	0

ANEXO 4. BOLETINES DE ENSAYO DE eDNA

TIPO DE ENSAYO: eDNA CLIENTE

ESPECIE: Salmo trutta y Anguilla anguilla

Procedencia: lbón recrecido de Ip

Código de proyecto: EC20012

CLIENTE

CONFEDERACIÓN HIDROGRÁFICA
DEL EBRO

Recepción de muestras en el laboratorio

Fecha:	28/06/2022
Técnico:	Susana Deus Álvarez
Nº Muestras:	9
Estado de las muestras:	Frías
Almacenaie:	Congelación

Código de muestra	Chequeo
IPP_E1S	V
IPP_E1M	✓
IPP_E1F	✓
IPP_PES_1_1	V
IPP_PES_1_2	✓
IPP_PES_1_3	✓
IPP_BEN_1_1	V
IPP_BEN_1_2	V
IPP_BEN_1_3	✓

TIPO DE ENSAYO: CLIENTE eDNA

ESPECIE: Salmo trutta y Anguilla anguilla

Procedencia: Ibón recrecido de Ip

EC20012 Código de proyecto:

CONFEDERACIÓN HIDROGRÁFICA

DEL EBRO

Filtración de muestras de agua

Susana Deus Álvarez Técnico:

Almacenaje: Congelación

Incidencias: No

Muestras filtradas				
Código	Volumen (L)	Nº filtros	Fecha	
IPP_E1_S	1	2	30/06/2022	
IPP_E1_M	1	2	30/06/2022	
IPP_E1_F	1	2	30/06/2022	
IPP_PES_1_1	1	2	30/06/2022	
IPP_PES_1_2	1	2	30/06/2022	
IPP_PES_1_3	1	2	30/06/2022	
IPP_BEN_1_1	1	2	30/06/2022	
IPP_BEN_1_2	1	2	30/06/2022	
IPP_BEN_1_3	1	2	30/06/2022	

Extracción de ADN

Fecha: 08/07/2022

Técnico: Susana Deus Álvarez

Método de extracción: Kit Qiagen

Número de muestras: 9 Incidencias: No

Muestras extraídas				
Código	Volumen (mL)	Quality Check		
IPP_E1_S	100	/		
IPP_E1_M	100	✓		
IPP_E1_F	100	✓		
IPP_PES_1_1	100	/		
IPP_PES_1_2	100	/		
IPP_PES_1_3	100	✓		
IPP_BEN_1_1	100	/		
IPP_BEN_1_2	100	/		
IPP_BEN_1_3	100	V		

TIPO DE ENSAYO: eDNA CLIENTE

ESPECIE: Salmo trutta y Anguilla anguilla

Procedencia: Ibón recrecido de Ip

Código de proyecto: EC20012

CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

Detección por PCR

Técnico: Susana Deus Álvarez

Incidencias: No

Salmo trutta

	qPCR	
Máquina PCR:	Quantum studio 3	
R2:	0.999	
Recta - Pendiente:	-3,800	
Recta - Intercepto	38,243	
Conservación:	congelación	

Resultados			
Código	Detección	Concentración (ng/µL)	
IPP_E1_S	+	393	
IPP_E1_M	+	1516	
IPP_E1_F	+	1330	
IPP_PES_1_1	+	1667	
IPP_PES_1_2	+	2582	
IPP_PES_1_3	+	1791	
IPP_BEN_1_1	+	2693	
IPP_BEN_1_2	+	438	
IPP_BEN_1_3	+	2586	
Control negativo PCR	-		

TIPO DE ENSAYO: eDNA CLIENTE

ESPECIE: Salmo trutta y Anguilla anguilla

Procedencia: Ibón recrecido de Ip

Código de proyecto: EC20012

CONFEDERACIÓN HIDROGRÁFICA

DEL EBRO

Se ha detectado la presencia de Salmo trutta en todas las muestras

Anguilla anguilla

	qPCR	
Máquina PCR:	Quantum studio 3	
Conservación:	congelación	

Resultados			
Código	Detección		
IPP_E1_S	-		
IPP_E1_M	-		
IPP_E1_F	-		
IPP_PES_1_1	-		
IPP_PES_1_2	-		
IPP_PES_1_3	-		
IPP_BEN_1_1	-		
IPP_BEN_1_2	-		
IPP_BEN_1_3	-		

Conclusión

No se ha detectado la presencia de Anguilla anguilla en ninguna muestra