

Código masa: 1681 Código estación: E1681 Red de embalses

DESCRIPCIÓN DEL PUNTO DE MUESTREO

E-T07: Monomíctico, calcáreo de zonas húmedas, con temperatura media Tipología: anual menor de 15°C, pertenecientes a ríos de cabecera y tramos altos.

Elementos biológicos Red a la que pertenece: Puntos de muestreo: analizados:

Operativa+Vigilancia Orilla E4681-FQ Fitoplancton Χ

> Perfil E4681

LOCALIZACIÓN

Monteagudo de Las Vicarías Municipio y provincia:

(Soria)

Comunidad Autónoma: Castilla - León

Subcuenca: Jalón Río: Nájima

Coordenadas UTM ETRS89 Huso 30:

X(m): 568.615 X(m): 568.342 Orilla

Y(m): 4.581.844

VISTA DEL EMBALSE

Código masa: 1681 Código estación: E1681 Red de embalses

MAPA DEL EMBALSE

Código masa: 1681 Código estación: E1681 Red de embalses

ELEMENTOS DE CALIDAD BIOLÓGICOS (EC-BIO)

FITOPLANCTON

16/07/2021

Composición (ide			Abundancia (células/mL)	Biovolumen (mm³/L)	Clases de Abundancia
	Achnanthidium minutissimum				1
	Fragilaria				1
Bacillariophyta	Gomphonema				1
Baomanopriyta	Navicula				1
	Pantocsekiella ocellata	(Pantocsek) K.T.Kiss & Ács 2016	999	0,224	1
	Botryococcus braunii	Kütz.	81	0,017	
	Carteria	Diesing	13	0,006	1
	Chlamydomonas	Ehrenberg	3	0,005	
	Chlorococcales	Meneghini	3	0,001	1
	Coenochloris fottii				1
	Hariotina reticulata				1
Chlorophyto	Lemmermannia komarekii	Hindák	43	0,001	1
Chlorophyta	Neglectella				1
	Oocystis	Nägeli	16	0,003	1
	Oocystis lacustris				1
	Scenedesmus ellipticus	(W et G.S.West) Chodat	21	0,004	1
	Tetrachlorella incerta	Hindák	502	0,011	1
	Tetraedron triangulare	Kors.	3	0,001	
	Cryptomonas erosa				1
Cryptophyta	Cryptomonas marssonii				1
Стурюрнува	Plagioselmis nannoplanctica	(H. Skuja) G. Novarino, I.A.N. Lucas & S. Morrall	21	0,002	1
Cyanobacteria	Merismopedia tenuissima	Lemm.	172	<0,001	1
Euglenophyta	Euglena				1
11.4	Kephyrion	Pascher	38	0,003	1
Heterokontophyta	Pseudokephyrion	Pascher	3	<0,001	
Streptophyta	Elakatothrix gelatinosa				1
Total:			1.918	0,277	

Código masa: 1681 Código estación: E1681 Red de embalses

10/09/2021

Composición (id			Abundancia (células/mL)	Biovolumen (mm³/L)	Clases de Abundancia
	Achnanthidium	(Kütz.)	1	<0,001	1
	minutissimum Aulacoseira	Czarnecki	-	,	
	ambigua				1
	Cyclotella				1
	Encyonopsis				1
	microcephala				
	Fragilaria				1
Bacillariophyta	Fragilaria crotonensis				1
	Gomphonema	Ehrenberg	1	<0,001	
	Navicula			-,	1
	Nitzschia				1
		(Pantocsek)			'
	Pantocsekiella ocellata	K.T.Kiss & Ács 2016	77	0,017	1
	Puncticulata radiosa				1
	Botryococcus braunii				1
	Chlorella	Beijerinck	4	<0,001	
	Chlorococcales	Meneghini	1	<0,001	
	Chloromonas	Gobi	4	0,004	2
	Coelastrum astroideum			,	1
	Coenochloris fottii				1
	Desmodesmus				1
	communis Hariotina	(Korshikov)			
	polychorda	E.Hegewald	85	0,017	2
	Hariotina reticulata				1
Chlorophyta	Lemmermannia komarekii	Hindák	4	<0,001	1
	Neglectella	Vodenicarov & Benderliev	13	0,081	2
	Oocystis lacustris	Chodat	20	0,008	1
	Oocystis marssonii	Lemmerman n	3	0,003	1
	Phacotus lenticularis	(Ehr.) Stein	2	0,001	
	Pseudopediastrum boryanum				1
	Scenedesmus				1
	Stauridium tetras				1
	Tetrachlorella incerta	Hindák	98	0,002	1
	Tetradesmus obliquus	Hegewald & Hanagata	1	<0,001	1

Código masa: 1681 Código estación: E1681 Red de embalses

Composición (ide	ntificación)		Abundancia (células/mL)	Biovolumen (mm³/L)	Clases de Abundancia
	Tetraedron minimum	(A.Braun) Hansg.	2	<0,001	1
	Tetraselmis arnoldii	(Proshkina- Lavrenko) R.E Norris, Hori & Chihara	1	0,001	1
	Cryptomonas				1
	Cryptomonas curvata	Ehr. emend Penard	2	0,003	
	Cryptomonas marssonii	Skuja	4	0,002	
Cryptophyta	Cryptomonas ovata	Ehrenberg	1	0,002	
	Plagioselmis nannoplanctica	(H. Skuja) G. Novarino, I.A.N. Lucas & S. Morrall	10	0,001	1
	Leptolyngbya				1
	Merismopedia punctata				1
	Merismopedia tenuissima	Lemm.	214	<0,001	1
Cyanobacteria	Microcystis				1
	Phormidium				1
	Planktolyngbya limnetica				1
	Pseudanabaena	Lauterborn	7	<0,001	1
	Ceratium hirundinella				2
Dinophyta	Peridiniopsis elpatiewskyi				1
	Peridinium willei				1
	Colacium	Ehr.	2	0,001	1
	Euglena	Ehrenberg	1	0,002	1
	Euglena ehrenbergii				1
Euglenophyta	Lepocinclis oxyuris				1
	Phacus	Dujardin	1	0,004	1
	Phacus pleuronectes				1
	Trachelomonas volvocina	Ehr.	1	0,001	
Heterokontophyta	Dinobryon divergens				1
	Cosmarium				1
Streptophyta	Mougeotia				1
	Staurastrum tetracerum				1
Total:			557	0,151	

Código masa: 1681 Código estación: E1681 Red de embalses

Clases de abundancia	1	2	3
Abundancia relativa	<10%	10-60%	>60%

Código masa: 1681 Código estación: E1681 Red de embalses

ELEMENTOS DE CALIDAD FISICOQUÍMICOS (EC-FQ)

ELEMENTOS FISICOQUÍMICOS

Dovémetre	Mátricos		Valo	ores	
Parámetro	Métricas	05/03/2021	16/07/2021	10/09/2021	17/12/2021
Profundidad máxima (m)		6,5	6,5	7,5	7,0
Profundidad Zona Fótica (m) ZF=2,5 x DS		5,8	3,3	2,2	5,9
Transparencia	Disco de Secchi (m)	2,34	1,30	0,86	2,36
Condiciones	Temperatura (°C)	9,6	23,9	20,9	5,2
térmicas	Termoclina (ausencia/presencia)	Ausencia	Presencia	Ausencia	Ausencia
Condiciones de oxigenación*	Oxígeno disuelto (mg/L)	11,1	7,6	7,4	11,7
Salinidad	Conductividad a 20°C (µS/cm)	916	920	944	897
	pH (unid)	7,9	8,3	9,0	8,2
Estado de acidificación	Alcalinidad total (mg/L CaCO3)	125	127	121	133
	NH₄ (mg/L)	0,0730	0,116	0,265	0,0330
	NO ₃ (mg/L)	3,46	3,00	0,989	1,92
Condiciones relativas a los	NO ₂ (mg/L)	0,0613	<0,05	<0,05	<0,05
nutrientes	N _{total} (mg/L)	4,05	1,25	1,90	1,04
	P-PO ₄ (mg/L)	<0,007	<0,007	<0,007	<0,007
	P _{total} (mg/L)	0,00842	0,00638	0,00711	0,00508

Datos procedentes de la muestra integrada de la capa fótica (*Condiciones de oxigenación del hipolimnion en presencia de termoclina y en todo el perfil en ausencia de termoclina)

Código masa: 1681 Código estación: E1681 Red de embalses

SUSTANCIAS PREFERENTES Y CONTAMINANTES ESPECÍFICOS

Incumplimiento de las NCA No

Código masa: 1681 Código estación: E1681 Red de embalses

PERFILES VERTICALES DE LOS PARÁMETROS FISICOQUÍMICOS

05/03/2021

Profundidad	Temperatura	CE a 20 ºC	рН	Oxíg	jeno
m	°C	μS/cm	ud.	mg/L	%Sat
0,0	10,0	918	8,6	10,6	94,1
0,5	9,7	917	8,7	11,0	97,2
1,0	9,4	917	8,6	11,1	97,0
1,5	9,3	916	8,5	11,1	96,9
2,0	9,3	916	8,2	11,1	97,1
2,5	9,2	914	8,1	11,1	96,8
3,0	9,2	915	8,1	11,1	96,8
3,5	9,2	914	8,0	11,1	96,7
4,0	9,1	913	8,0	11,1	96,6
4,5	9,2	914	8,0	11,1	96,9
5,0	9,1	915	8,0	11,1	96,8
5,5	9,1	915	8,0	11,2	96,9
6,0	9,1	915	8,0	11,3	97,9
6,5	9,1	913	8,0	11,6	101,2

16/07/2021

°C 24,8	μS/cm 922	ud.	mg/L	0/0 /
	022		ilig/L	%Sat
	922	8,3	7,9	95,5
24,7	921	8,3	7,9	95,6
24,9	922	8,3	7,9	95,6
24,8	922	8,3	7,9	95,9
22,7	916	8,3	8,0	92,9
21,9	913	8,3	7,9	90,1
21,8	912	8,3	7,9	89,8
21,7	913	8,3	7,8	89,3
21,6	911	8,3	7,8	89,2
21,5	911	8,3	7,8	88,0
21,4	912	8,3	7,7	86,8
21,3	912	8,2	7,4	83,8
21,3	912	8,2	7,3	82,4
21,3	912	8,2	7,0	79,0
	24,9 24,8 22,7 21,9 21,8 21,7 21,6 21,5 21,4 21,3 21,3	24,9 922 24,8 922 22,7 916 21,9 913 21,8 912 21,7 913 21,6 911 21,5 911 21,4 912 21,3 912 21,3 912 21,3 912 21,3 912	24,9 922 8,3 24,8 922 8,3 22,7 916 8,3 21,9 913 8,3 21,8 912 8,3 21,7 913 8,3 21,6 911 8,3 21,5 911 8,3 21,4 912 8,3 21,3 912 8,2 21,3 912 8,2	24,9 922 8,3 7,9 24,8 922 8,3 7,9 22,7 916 8,3 8,0 21,9 913 8,3 7,9 21,8 912 8,3 7,9 21,7 913 8,3 7,8 21,6 911 8,3 7,8 21,5 911 8,3 7,8 21,4 912 8,3 7,7 21,3 912 8,2 7,4 21,3 912 8,2 7,3 21,3 912 8,2 7,0

10/09/2021

Código masa: 1681 Código estación: E1681 Red de embalses

Profundidad	Temperatura	CE a 20 ºC	рН	Oxíg	jeno
m	°C	μS/cm	ud.	mg/L	%Sat
0,0	20,9	942	10,2	7,7	86,2
0,5	20,9	945	10,0	7,6	85,7
1,0	20,9	943	9,9	7,6	85,4
1,5	20,9	944	9,8	7,6	85,3
2,0	20,8	946	9,8	7,6	84,8
2,5	20,8	947	9,7	7,5	84,1
3,0	20,8	944	9,6	7,5	84,0
3,5	20,7	945	9,5	7,5	83,9
4,0	20,7	946	9,4	7,5	83,7
4,5	20,5	947	9,3	7,5	83,1
5,0	20,5	948	9,1	7,5	83,7
5,5	20,4	947	9,1	7,5	82,9
6,0	20,3	946	9,1	7,3	81,3
6,5	20,2	945	9,1	7,4	81,4
7,0	20,2	946	9,0	7,0	77,3
7,5	20,1	949	8,9	5,5	60,9

17/12/2021

Profundidad	Temperatura	CE a 20 °C	рН	Oxíg	jeno
m	°C	μS/cm	ud.	mg/L	%Sat
0,0	5,7	895	8,1	11,6	92,4
0,5	5,5	895	8,1	11,6	92,2
1,0	5,2	894	8,2	11,6	92,0
1,5	5,2	894	8,2	11,7	92,0
2,0	5,2	894	8,2	11,7	91,9
2,5	5,1	894	8,2	11,7	92,0
3,0	5,1	894	8,2	11,7	92,0
3,5	5,1	894	8,2	11,7	92,0
4,0	5,1	894	8,2	11,7	92,0
4,5	5,1	894	8,2	11,7	91,9
5,0	5,0	894	8,2	11,7	91,8
5,5	5,0	894	8,2	11,7	91,7
6,0	5,0	894	8,2	11,7	91,7
6,5	5,0	894	8,2	11,7	91,6
7,0	5,0	893	8,2	11,7	91,7

Código masa: 1681 Código estación: E1681 Red de embalses

ELEMENTOS DE CALIDAD QUÍMICOS (EC-Q)

SUSTANCIAS PRIORITARIAS Y OTROS CONTAMINANTES

Incumplimiento de las NCA No

Código masa: 1681 Código estación: E1681 Red de embalses

ESTADO TRÓFICO

Índice Valor Nivel trófico

Fitoplaneton (1)	Concentración de clorofila-a (µg/L) ⁽²⁾	0,50	Ultraoligotrófico
Fitoplancton (1)	Densidad algal (cel/ml)	1.237,5	Mesotrófico
Transparencia ⁽¹⁾	Disco de Secchi (m)	1,72*	Mesotrófico
Condiciones relativas a los nutrientes (1)	Fósforo total (mg P/L)	0,007	Oligotrófico

ESTADO TRÓFICO DEL EMBALSE	Oligotrófico
----------------------------	--------------

⁽¹⁾ Para el cálculo del Estado Trófico se utiliza la media de los datos anuales (OCDE, 1982).

⁽²⁾ Por causas naturales el valor del Disco de Secchi es bajo y no se tiene en cuenta para el cálculo del Estado Trófico

Código masa: 1681 Código estación: E1681 Red de embalses

POTENCIAL ECOLÓGICO

	Índice	Valor índice	RCE	Nivel calidad
Fitoplancton ⁽¹⁾	Concentración de clorofila-a (µg/L) ⁽³⁾	0,50	5,20	Bueno o superior
	Biovolumen total (mm³/L)	0,21	3,62	Bueno o superior
	% Cianobacterias	0,04	1,00	Bueno o superior
	IGA	3,49	0,99	Bueno o superior
	NIVEL DE CALIDAD	Bueno o superior		

POTENCIAL ECOLÓGICO según elementos de calidad biológicos		Bueno o superior		
Transparencia (2)	Disco de Secchi (m)	1,82*	-	Moderado
Condiciones de oxigenación (2)	Oxígeno Disuelto (mg/L)	9,35	-	Muy Bueno
Condiciones relativas a los nutrientes (2)	Fósforo total (mg P/L)	0,007	-	Bueno

^{*}Por causas naturales el valor del Disco de Secchi es bajo y no se tiene en cuenta para el cálculo del Potencial Ecológico.

Sustancias Preferentes y Contaminantes Específicos	-	No se incumplen las NCA	Muy bueno
---	---	-------------------------	-----------

,	
POTENCIAL ECOLOGICO cogún alementos de calidad ficiac químicos	Puono
POTENCIAL ECOLOGICO según elementos de calidad fisicoguímicos	Bueno

POTENCIAL ECOLÓGICO DEL EMBALSE	Bueno o superior
---------------------------------	------------------

ESTADO QUÍMICO

ESTADO QUÍMICO DEL EMBALSE	Bueno

ESTADO FINAL

POTENCIAL ECOLÓGICO DEL EMBALSE	Bueno o superior
ESTADO QUÍMICO DEL EMBALSE	Bueno
ESTADO FINAL DEL EMBALSE	Bueno

⁽¹⁾ Para el cálculo del Potencial Ecológico se utiliza la media de los datos anuales (Protocolo de análisis y cálculo de métricas de fitoplancton en lagos y embalses, MFIT-2013 versión 2).

⁽²⁾ Para el cálculo del Potencial Ecológico se utiliza la mediana de los datos anuales (Guía para la Evaluación del Estado de las Aguas Superficiales y Subterráneas, MITERD, 2020).

⁽³⁾ La concentración de clorofila-a corresponde al muestreo de septiembre 2021. No se dispone de datos de julio.

Código masa: 1681 Código estación: E1681 Red de embalses

FOTOGRAFÍAS

05/03/2021

16/07/2021

Código masa: 1681 Código estación: E1681 Red de embalses

10/09/2021

17/12/2021

